Jak ulepszyć mikroendoskopy? Nowa konstrukcja budzi nadzieje na poprawę obrazowania biomedycznego

Czas czytania: około 8 minut

Jak ulepszyć mikroendoskopy? Nowa konstrukcja budzi nadzieje na poprawę obrazowania biomedycznego

Mikroendoskopy to podstawa nowoczesnej diagnostyki medycznej - pozwalają dostrzec to, czego jeszcze dwie dekady temu nie potrafiliśmy nawet opisać. Technologia ta jest ciągle ulepszana, a do rozwoju sond przyczyniają się naukowcy z ICTER.

Mikroendoskopy wykorzystujące światłowody stają się coraz ważniejszymi narzędziami do obrazowania, ale mają swoje ograniczenia fizyczne. Są one szczególnie istotne w przypadku zastosowań wymagających dużej odległości roboczej, wysokiej rozdzielczości i/lub minimalnej średnicy sondy. Praca badawcza, zatytułowana "Superior imaging performance of all-fiber, two- focusing-element microendoscopes", autorstwa dr Karola Karnowskiego z ICTER, dr Gavrielle Untracht z Technical University of Denmark (DTU), dr Michaela Hackmanna z University of Western Australia (UWA), Onura Cetinkayi z ICTER i prof. Davida Sampsona z University of Surrey, rzuca nowe światło na nowoczesne mikroendoskopy. Warto podkreślić, że prace badawcze zostały rozpoczęte w czasie, gdy autorzy pracowali w jednej grupie badawczej na UWA.

Naukowcy pokazali w niej, że endoskopowe sondy obrazujące, w szczególności te do tzw. obrazowania bocznego, łączące soczewki światłowodowe (GRIN) z soczewkami kulistymi, oferują doskonałe parametry pracy w całym zakresie apertur numerycznych i otwierają drogę do szerszego zakresu zastosowań obrazowania. W publikacji wydajność endoskopowych sond obrazujących jest porównywalna z powszechnie stosowanymi sondami z pojedynczymi elementami ogniskującymi.

Czym są mikroendoskopy?

Miniaturowe sondy światłowodowe, czyli mikroendoskopy, umożliwiają obrazowanie mikrostruktur tkankowych w głębi próbki lub pacjenta. Szczególnie obiecująca jest endoskopowa tomografia optyczna OCT (Optical Coherence Tomography), która nadaje się do obrazowania objętościowego zarówno do tkanek zewnętrznych, jak i wnętrza organów (np. górnych dróg oddechowych, przewodu pokarmowego, czy kanalików w płucach).

Można wyróżnić trzy główne zakresy pracy sond światłowodowych. Badania dużych, pustych narządów (np. jak wspomniane górne drogi oddechowe) wymagają największych zakresów głębokości obrazowania (do 15 mm lub więcej od powierzchni sondy), które zwykle można osiągnąć dzięki wiązkom gaussowskim o niskiej rozdzielczości (rozmiar plamki w ognisku w zakresie 30-100 μm). Pośredni zakres rozdzielczości (10-30 μm) przydaje się do szerszego zakresu zastosowań, np. obrazowania przełyku, mniejszych dróg oddechowych, naczyń krwionośnych, pęcherza moczowego, jajników czy przewodu słuchowego. Największym wyzwaniem jest uzyskanie wiązek o rozdzielczości lepszej niż 10 μm, które są potencjalnie użyteczne w badaniach z użyciem modelach zwierzęcych.

Przy tworzeniu sondy, trzeba pamiętać, by zachować kompromis między parametrami konstrukcyjnymi a ich wpływem na wydajność obrazowania. Układy optyczne o dużej aperturze numerycznej (wysokiej rozdzielczości) mają zwykle krótszą odległość roboczą (WD). Ponadto lepsza rozdzielczość i większa odległość robocza są trudniejsze do osiągnięcia w miarę zmniejszania średnicy sondy. Może to być szczególnie problematyczne w przypadku sond do obserwacji bocznej - w porównaniu z ich odpowiednikami obrazującymi w przód, wymagana jest większa minimalna odległość robocza. Jeżeli sonda jest zamknięta w cewniku lub igle, powoduje to wydłużenie wymaganej minimalnej odległości roboczej - w wielu przypadkach to właśnie ona jest czynnikiem ograniczającym w odniesieniu do minimalnej osiągalnej rozdzielczości lub średnicy sondy.

Warto podkreślić, że inżynierom zazwyczaj zależy na minimalizacji średnicy sondy ze względu na zmniejszenie perturbacji dla próbki i/lub komfort pacjenta. Mniejsza sonda to bardziej elastyczny cewnik, a więc i lepsza tolerancja badania przez pacjenta. Dlatego jednym z najlepszych rozwiązań jest stosowanie monolitycznych sond światłowodowych, których średnica jest ograniczona przez grubość włókien optycznych. Sondy takie charakteryzują się łatwością wytwarzania, dzięki technologii spawania światłowodów, co pozwala uniknąć konieczności żmudnego ustawiania i łączenie (zazwyczaj klejenia) poszczególnych elementów mikrooptycznych.

Różne rodzaje mikroendoskopów

Najpopularniejsze konstrukcje światłowodowych sond obrazujących to te oparte na dwóch typach elementów ogniskujących: sondy z włóknami GRIN (GFP – GRIN fiber probes) oraz sondy z soczewkami kulistymi (BLP – ball lens probes). Sondy GRIN są łatwe do wykonania, a ich moc refrakcyjna GRIN nie jest tracona, gdy współczynnik załamania otaczającego ośrodka jest zbliżony się do współczynnika załamania użytego światłowodu. Możliwe do osiągnięcia konstrukcje są ograniczone przez komercyjnie dostępne włókna GRIN. Szczególnie trudne jest uzyskanie wysokiej rozdzielczości w przypadku włókien GRIN o małej średnicy rdzenia.

W przypadku sond do obserwacji bocznej, zakrzywiona powierzchnia włókna (i potencjalnie cewnika) wprowadza zniekształcenia, które mogą mieć negatywny wpływ na jakość obrazowania. Sferyczne sondy typu BLP nie będą miały tego problemu, ale rozmiar kuli większy niż średnica włókna jest często wymagany do osiągnięcia rozdzielczości porównywalnej z sondami GFP. Siła skupiająca sondy BLP zależy od współczynnika załamania światła otaczającego ośrodka, co jest ważną kwestią podczas pracy w ośrodku o zbliżonym  lub w bliskim kontakcie z próbkami biologicznymi.

Jednym z rozwiązań do polepszenia parametrów sond, jest zastosowanie wielu elementów skupiających światło, podobnie jak w przypadku konstrukcji obiektywów o dużej odległości roboczej. Badania wykazały, że połączenie wielu elementów skupiających światło zapewnia lepsze wyniki dla wielu celów obrazowania. Sondy z wieloma elementami ogniskującymi mogą osiągnąć lepszą rozdzielczość przy mniejszej średnicy, jednocześnie oferować większe odległości robocze bez poświęcania rozdzielczości.

Jak ulepszyć sondy?

W swojej najnowszej pracy, naukowcy z dr Karnowskim na czele wykazali, że sondy z dwoma elementami ogniskującymi, w których zastosowano zarówno segmenty GRIN, jak i soczewki kuliste - nazywane sondami GRIN-ball-lens probes (GBLP) - znacznie zwiększają wydajność monolitycznych sond światłowodowych. Ich pierwsze wyniki z modelowania pokazywano już na konferencjach w 2018 i 2019 roku. Sondy GBLP porównano z najczęściej używanymi sondami GFP oraz BLP i wykazano korzyści w zakresie wydajności, szczególnie w przypadku zastosowań wymagających większych odległości roboczych, lepszej rozdzielczości i/lub małych rozmiarów.

Dla intuicyjnej wizualizacji parametrów pracy sondy, naukowcy wprowadzili nowatorski sposób kompleksowej prezentacji wyników symulacji, szczególnie przydatny w przypadku, gdy w symulacji wykorzystywane są więcej niż dwie zmienne. Analiza wpływu długości włókna GRIN i rozmiaru soczewki kulistej doprowadziła do dwóch interesujących wniosków:  dla optymalnych wyników zakres długości włókna GRIN może być utrzymana w zakresie 0,25-0,4 długości skoku (tzw. pitch length); nawet jeśli zysk odległości roboczej (WD) nie jest tak znaczący dla sond GBLP o wysokiej aperturze numerycznej, autorzy pokazali, że taka sama lub lepsze wydajność w zakresie odległości roboczej jest osiągana dla sondy ze dwukrotnie mniejszą średnicą. Co więcej, nowatorskie sondy GBLP oferują wyższe rozdzielczość w porównaniu do sond BLP.

W podsumowaniu pracy czytamy:

Zademonstrowaliśmy potencjał konstrukcji sond GBLP dla zastosowań o zwiększonej odległości roboczej, szczególnie ważnych dla sond z obrazowaniem bocznym, z wysoce zredukowanym wpływem współczynnika załamania środowiska, w którym pracuje sonda i znacznie mniejszym rozmiarem  w porównaniu z sondami BLP lub GFP. Te zalety czynią sondy GBLP narzędziem wartym rozważenia w wielu zastosowaniach do obrazowania w badaniach biologicznych i biomedycznych, w szczególności w projektach wymagających mikroendoskopów.

Autor notki prasowej: Marcin Powęska

Uwaga: Pierwsze wyniki z modelowania "GRIN-ball-lens probes (GBLP)" zostały już zaprezentowane na konferencjach w 2018 i 2019 roku:

- Karol Karnowski, Gavrielle R. Untracht, Michael J. Hackmann, Mingze Yang, Onur Cetinkaya, David D. Sampson, "Versatile, all-fiber, side viewing imaging probe for applications in catheter-based optical coherence tomography", Photonics West, San Francisco, USA, Feb 2019, prezentacja ustna;

- K. Karnowski, G. Untracht, M. Hackmann, M. Yang, O. Cetinkaya, and D. D. Sampson, "Versatile, monolithic imaging probes for catheter-based OCT," 15th Conference on Optics Within Life Sciences, Rottnest Island, Australia, Nov. 2018, prezentacja plakatowa.

Zespół odpowiedzialny za te wyniki rozpoczął pracę na University of Western Australia (UWA), a obecnie prace zostały zakończone w ramach następujących instytucji: Instytut Chemii Fizycznej, Polska Akademia Nauk oraz University of Surrey, przy czym tylko jeden z autorów pozostał na UWA.

Cytowana publikacja: K. Karnowski, G. Untracht, M. Hackmann, O. Cetinkaya and D. Sampson, "Superior Imaging Performance of All-Fiber, Two-Focusing-Element Microendoscopes," in IEEE Photonics Journal, vol. 14, no. 5, pp. 1-10, Oct. 2022, Art no. 7152210, doi: 10.1109/JPHOT.2022.3203219.

Projekt Międzynarodowe Centrum Badań Oka (MAB/2019/12) jest realizowany przez Instytut Chemii Fizycznej Polskiej Akademii Nauk  w ramach programu Międzynarodowe Agendy Badawcze Fundacji na rzecz Nauki Polskiej, współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Rozwoju Regionalnego.

Źródła finansowania:

Narodowa Agencja Wymiany Akademickiej (NAWA) w ramach programu Polskie Powroty
University of Western Australia IPRS
Rank Prize Covid Fund
Australian Research Council
University of Surrey

  • Autor: Marcin Powęska
  • Materiał graficzny: dr Karol Karnowski i mgr inż. Bartłomiej A. Bałamut
  • Data wpisu: 27.10.2022