Laboratorium Analizy Powierzchni

  • Kierownik: dr hab. Inż. Marcin Pisarek, prof. Instytutu
  • Nazwa: Laboratorium Analizy Powierzchni

Absolwent Politechniki Warszawskiej Wydziału Inżynierii Materiałowej. Pracownik IChF PAN od roku 2003. Obecnie kierownik Laboratorium Analizy Powierzchni w IChF PAN, zatrudniony na stanowisku profesora. Obszar zainteresowań naukowych: fizykochemia powierzchni materiałów (nauka o powierzchni materiałów), nanomateriały. Autor i współautor 122 prac naukowych, indeks H = 22. 

Członkowie

  • dr Olga Chernyayeva 
  • prof. dr hab. Aleksander Jabłoński 
  • dr inż. Andrzej Kosiński 
  • dr inż. Mirosław Krawczyk 
  • dr hab. Wojciech Lisowski 
  • dr inż. Kostiantyn Nikiforow 
  • dr inż. Janusz Sobczak 
  • mgr. Anna Gamdzyk

Kontakt

mpisarek@ichf.edu.pl, 22 343 3325

wlisowski@ichf.edu.pl, 22 343 3436

mkrawczyk@ichf.edu.pl, 22 343 3403

Badania

Laboratorium Analizy Powierzchni wyposażone jest w aparaturę naukową przeznaczoną do badania procesów fizykochemicznych zachodzących w obszarze kilku, kilkunastu monowarstw atomowych przy powierzchni ciał stałych.  Specjalizuje się w określeniu jakościowego i ilościowego składu chemicznego, jak również topografii i struktury powierzchni materiałów (ciał stałych).  Do tego celu wykorzystywane są następujące metody badawcze: spektroskopia fotoelektronów w zakresie promieniowania rentgenowskiego (XPS - ESCA), spektroskopia elektronów Augera (AES), spektroskopia piku elastycznego (EPES), mikroskopia sił atomowych (AFM), skaningowa mikroskopia tunelowa (STM) oraz dyfrakcja niskoenergetycznych, tzw. polwolnych elektronów (LEED).

Spis wybranych publikacji 2020/2021:

M. Krawczyk, M. Pisarek, R. Szoszkiewicz, A. Jabłoński, Surface characterization of MoS2 atomic layers mechanically exfoliated on a Si substrate, Materials, 2020, 13, 3595

M. Pisarek, M. Krawczyk, M. Hołdyński, W. Lisowski, Plasma nitriding of TiO2 nanotubes: N-doping in situ investigations using XPS, ACS Omega, 2020, 5, 8647-8658

M. Pisarek, P. Kędzierzawski, M. Andrzejczuk, M. Hołdyński, A. Mikołajczuk-Zychora, A. Borodziński, M. Janik-Czachor, TiO2 Nanotubes with Pt and Pd Nanoparticles as Catalysts for Electro-Oxidation of Formic Acid, Materials, 2020, 13, 1195

R. Ambroziak, J. Krajczewski, M. Pisarek, A. Kudelski, Immobilization of Cubic Silver Plasmonic Nanoparticles on TiO2 Nanotubes, Reducing the Coffee Ring Effect in Surface-Enhanced Raman Spectroscopy Applications, ACS Omega, 2020, 5 (23), 13963-13972

A. Jabłoński, C. J. Powell, Effective attenuation lengths for different quantitative applications of X-ray photoelectron spectroscopy, Journal of Physical and Chemical Reference Data, 2020, 49, 033102

A. Fiszka Borzyszkowska, A. Pieczyńska, A. Ofiarska, W. Lisowski, K. Nikiforow, E. M. Siedlecka, Photocatalytic degradation of 5-fluorouracil in an aqueous environment via Bi–B co-doped TiO2 under artificial sunlight, International Journal of Environmental Science and Technology, 2020, 17, 2163–2176

L. Ilieva, P. Petrova, G. Pantaleo, R. Zanella, J.W. Sobczak, W. Lisowski, I. Ivanov, Z. Kaszkur, L.F. Liotta, A.M. Venezia, T. Tabakova, Impact of ceria loading on the preferential CO oxidation over gold catalysts on CeO2/Al2O3 and Y-doped CeO2/Al2O3 supports prepared by mechanical mixing, Catalysis Today, 2020, 357, 547-555

L. Ilieva, I. Ivanov, P. Petrova, G. Munteanu, Y. Karakirova, J. W. Sobczak, W. Lisowski, E. Anghel, Z Kaszkur, T. Tabakova, Effect of Y-doping on the catalytic properties of CuO/CeO2 catalysts for water-gas shift reaction, International Journal of Hydrogen Energy, 2020, 45(49), 26286-26299

A. Basa, S. Wojtulewski, B. Kalska-Szostko, M. Perkowski, E. Gonzalo, O. Chernyayeva, A. Kuhn, F. García-Alvarado, Carbon coating of air-sensitive insulating transition metal fluorides: An example study on Li3FeF6 high-performance cathode for lithium, Journal of Materials Science and Technology, 2020, 55, 107-115

J. Kalecki, M. Cieplak, M. Dąbrowski, W. Lisowski, A. Kuhn, P. S. Sharma, Hexagonally Packed Macroporous Molecularly Imprinted Polymers for Chemosensing of Follicle-Stimulating Hormone Protein, ACS Sensors, 2020, 5, 118−126

M. Miodyńska, A. Mikolajczyk, B. Bajorowicz, J. Zwara, T. Klimczuk, W. Lisowski, G. Trykowski, H. P. Pinto, A. Zaleska-Medynska, Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance, Applied Catalysis B: Environmental, 2020, 272, 118962

P. Parnicka, A. Mikolajczyk, H. P. Pinto, W. Lisowski, T. Klimczuk, G. Trykowski, B. Bajorowicz, A. Zaleska-Medynska, Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6, Applied Surface Science, 2020, 525, 146596

M. C. Nevarez Martinez, B. Bajorowicz, T. Klimczuk, A. Żak, J. Łuczak, W. Lisowski, A. Zaleska-Medynska, Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation, Journal of Hazardous Materials, 2020, 398, 123250

J. Zwara, A. Pancielejko, M. Paszkiewicz-Gawron, J. Łuczak, M. Miodyńska, W. Lisowski, A. Zaleska-Medynska, E. Grabowska-Musiał, Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity, Materials, 2020, 13, 4055

I. Goszewska, M. Zienkiewicz-Machnik, W. Błachucki, A. Kubas, D. Giziński, K. Matus, K. Nikiforow, D. Lisovytskiy, A. Śrębowata, J. Szlachetka, J. Sa, Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone, Coatings, 2020, 10(11), 1267

M. Richert, G. Trykowski, M. Walczyk, M. Cieslak, J. Kazmierczak-Baranska, K. Krolewska, J.W. Sobczak, S. Biniak, Modification of multiwall carbon nanotubes with ruthenium drug candidates - indazolium [tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019), Dalton Transactions, 2020, 49, 16791-16800

J. Dolinska, M. Holdynski, P. Pieta, W. Lisowski, T. Ratajczyk, B. Palys, A. Jablonska, M. Opallo, Noble Metal Nanoparticles in Pectin Matrix. Preparation, Film Formation, Property Analysis, and Application in Electrocatalysis, ACS Omega, 2020, 5, 23909−23918

J. Dolinska, M. Holdynski, R. Ambroziak, A. Modrzejewska-Sikorska, G. Milczarek, M. Pisarek, M. Opallo, The medium effect on electrodissolution of adsorbed or suspended Ag nanoparticles, Electrochimica Acta, 2020, 350, 136406

D. Kuczyńska-Zemła, E. Kijeńska-Gawrońska, A. Chlanda, A. Sotniczuk, M. Pisarek, K. Topolski, W. Swięszkowski, H. Garbacz, Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rolling, Applied Surface Science, 2020, 511, 145523

T. Mościcki, R. Psiuk, H. Słomińska, N. Levintant-Zayonts, D. Garbiec, M. Pisarek, P. Bazarnik, S. Nosewicz, J. Chrzanowska-Giżyńska, Influence of over stoichiometric boron and titanium addition on the properties of RF magnetron sputtered tungsten borides, Surface and Coatings Technology, 2020, 390, 125689

D. Kuczyńska-Zemła, E. Kijeńska-Gawrońska, M. Pisarek, P. Borowicz, W. Swieszkowski, H. Garbacz, Effect of laser functionalization of titanium on bioactivity and biological response, Applied Surface Science, 2020, 525, 146492

M. Zienkiewicz-Machnik, I. Goszewska, D. Giziński, A. Śrębowata, K. Kuzmowicz, A. Kubas, K. Matus, D. Lisovytskiy, M. Pisarek, J. Sá, Tuning Nano-Nickel Catalyst Hydrogenation Aptitude by On-the-Fly Zirconium Doping, ChemCatChem, 2020, 12, 1–8

B. Gieroba, A. Sroka-Bartnicka, P. Kazimierczak, G. Kalisz, I.S. Pieta, R. Nowakowski, M. Pisarek, A. Przekora, Effect of Gelation Temperature on the Molecular Structure and Physicochemical Properties of the Curdlan Matrix: Spectroscopic and Microscopic Analyses, International Journal of Molecular Sciences, 2020, 21, 6154

M. Olak-Kucharczyk, G. Szczepańska, M.H. Kudzin, M. Pisarek, The Photocatalytical Properties of RGO/TiO2 Coated Fabrics, Coatings, 2020, 10, 1041

O. Oleshko, Y. Husak, V. Korniienko, R. Pshenychnyi, Y. Varava, O. Kalinkevich, M. Pisarek, K. Grundstains, O. Pogorielova, O. Mishchenko, W. Simka, R. Viter, M. Pogorielov, Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy, Nanomaterials, 2020, 10, 2401

J. Grudzień, M. Jarosz, K. Kamiński, M. Kobasa, K. Wolski, M. Kozieł, M. Pisarek, G. D. Sulka, Growth of Lactic Acid Bacteria on Gold—Influence of Surface Roughness and Chemical Composition, Nanomaterials, 2020, 10, 2499

B. Bajorowicz, A. Mikolajczyk, H. P. Pinto, M. Miodyńska, W. Lisowski, T. Klimczuk, I. Kaplan-Ashiri, M. Kazes, D. Oron, A. Zaleska-Medynska, Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites, Journal of Physical Chemistry C, 2020, 124, 26769−26779

S. Kyrylenko, F. Warchoł, O. Oleshko, Y. Husak, A. Kazek-Kęsik, V. Korniienko, V. Deineka,V. Holubnycha, M. Sowa, A. Maciej, J. Michalska, A. Jakóbik-Kolon, I. Matuła, M. Basiaga, V. Hulubnycha, A. Stolarczyk, M. Pisarek, O. Mishchenko, M. Pogorielov, W. Simka, Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation, Materials Science and Enginnering C, 2021, 119, 111607

A. Michalicha, K. Pałka, A. Roguska, M. Pisarek, A. Belcarz, Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules, Carbohydrate Polymers, 2021, 256, 117524

Aparatura

  • PHI 5000 VersaProbe Scanning ESCA Microprobe (ULVAC-PHI, Japan/USA)
  • Komora preparatywna UHV wyposażona w reaktor wysokociśnieniowy, dwie naparowywarki (efuzyjną i elektronową) kalibrowane wagą kwarcową, spektrometr masowy QMS (Stanford Research), źródło plazmowe (SPECS) a także działo jonowe. Ponadto komora wyposażona jest w spektrometr  AES-LEED (OCI Microengineering).
  • Mikroskop UHV – AFM/STM (RHK Technology)
  • Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 (Thermo Electron) – mikrosonda Auger
  • Spektrometr ESCALAB-210 (VG Scientific)
  • Spektrometr XPS/AES (VG Microtech)

Cennik

  • Koszt analizy jednej próbki metodą spektroskopii XPS - 900 zł brutto
  • Koszt analizy jednej próbki metodą spektroskopii AES – 800 zł brutto
  • Koszt obrazowania powierzchni jednej próbki metodą AFM/STM – 800 zł brutto
  • Koszt analizy profilowej AES/XPS składu chemicznego jednej próbki – 1500 zł brutto
  • Preparatyka próbek w warunkach UHV -  koszt jednej próbki 800 zł brutto