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Abstract

Whole-cell simulations have been identified as the grand challenge of XXIst-century. Since
even in the exascale computing era, first-principle atomistic whole-cell simulations are compu-
tationally prohibitive, coarse-grained reaction-diffusion models appear as essential and feasible
alternatives. In such models, it is crucial to adequately describe the diffusion and reaction prop-
erties of all biologically-relevant molecules. However, as it has been known for decades, the
cell interior is crowded with macromolecules occupying 20 to 40% of the cell volume. Clearly,
diffusion and reactions under such crowding conditions are not the same as in test tubes. To
understand these differences, in this Thesis, we explore the generic effects of how crowding
affects macromolecular diffusion, chemical equilibria, and reaction kinetics.

In many simulation studies, hard spherical particles are used to model macromolecules com-
posing the crowded intracellular milieu. However, the macromolecules inside living cells have
various shapes and softness. We show with Brownian dynamics (BD) simulations that these
factors can considerably affect macromolecular diffusion. For instance, we find that elongated
crowders slow down diffusion more substantially than spherical ones, while soft crowders slow
down diffusion less effectively than hard ones, but not in the case of elongated diffusing parti-
cles.

To minimize computational costs, many studies consider hydrodynamic interactions using
the (generalized) Rotne-Prager-Yamakawa (RPY, or far-field) approximation, neglecting near-
field lubrication effects. Here, we provide an open-source computer program (pyBrown) that in-
cludes both near-field and far-field hydrodynamic interactions. Using this program, we demon-
strate that the popular RPY approximation visibly overestimates the diffusion coefficients of
macromolecules in crowded environments. We find that the RPY approximation may provide
even less accurate results than simulations without hydrodynamic interactions at all.

A living cell is a non-equilibrium system where many reactions continuously occur. Thus,
another critical aspect of cellular modeling is to account for the coupling of diffusion and reac-
tions. With BD simulations, we explore the effect of crowding on a catalysis-induced enhance-
ment of enzyme diffusion, reported recently for dilute systems (i.e., without crowders). We
consider a model enzyme that shrinks upon binding a substrate and find that such enzymes ex-
hibit enhanced diffusion also in crowded environments. The enhanced diffusion increases when
crowding is due to enzymes but decreases when it is due to passive particles. The catalytically-
active enzymes enhance the diffusion of passive crowders as well. One possibility to study such
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catalysis-induced diffusion enhancements experimentally is microfluidic H-cell measurement.
We perform the rational design of an H-cell experiment and investigate under which conditions
such experiments are feasible to study the enhanced enzyme diffusion.

Since the seminal work by Minton, it has been known that crowding affects chemical equi-
libria and reaction kinetics. However, our understanding of how reactions proceed under crowd-
ing is still limited. Herein, we study the kinetics of reactions catalyzed by conformation-
changing enzymes and how crowding affects them. Using scaled particle theory (SPT), we
derive an expression relating the crowding-dependent reaction rates and geometrical factors de-
scribing how an enzyme changes its shape during catalytic turnover. We test these results with
BD simulations of a model enzyme consisting of two beads changing their separation upon
binding a substrate.

Multivalent binding reactions play an essential role in many life-sustaining and life-threatening
processes, from antibody-antigen binding in the immune response to amyloid aggregation. Al-
though such reactions often occur under crowding conditions, the effect of crowding on their
equilibria is not fully understood. In this Thesis, we study the cooperativity of divalent binding
– an important measure describing how the binding of one site affects the binding affinity of
other sites – using SPT and combined Monte Carlo and BD simulations. We show that crowd-
ing can enhance or reduce cooperativity depending on how the conformation of a molecule
changes upon subsequent binding events. In particular, we find that non-cooperative reactions
can become cooperative under crowding and vice versa.
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Streszczenie

Holistyczne symulacje komputerowe komórek żywych zostały uznane za jedno z wielkich wy-
zwań XXI-wiecznej nauki. Ponieważ nawet w epoce obliczeń eksaskalowych atomistyczne
symulacje całych komórek są z obliczeniowego punktu widzenia nieosiągalne, gruboziarniste
modele reakcji-dyfuzji wydają się być niezbędną i realną alternatywą. W takich modelach klu-
czowe jest poprawne opisanie dyfuzji i reakcji wszystkich biologicznie istotnych cząsteczek.
Jednakże, jak wiadomo od dekad, wnętrze komórki jest zatłoczone makrocząsteczkami, które
zajmują od 20 do 40% jej objętości. Jasnym jest, że dyfuzja i reakcje w warunkach takiego
zatłoczenia nie są takie same jak w probówkach. Aby zrozumieć te różnice, w niniejszej roz-
prawie badamy jak zatłoczenie wpływa na dyfuzję makrocząsteczek, równowagi chemiczne
oraz kinetykę reakcji.

W wielu symulacjach komputerowych makrocząsteczki tworzące zatłoczone środowisko
wewnątrzkomórkowe reprezentowane są przez twarde kule. Jednak makrocząsteczki wewnątrz
żywych komórek cechują się różnym kształtem i miękkością. Za pomocą symulacji dynamiki
brownowskiej pokazujemy, że czynniki te mogą wyraźnie wpływać na dyfuzję makrocząste-
czek. Na przykład, jak wynika z naszych badań, wydłużone cząsteczki zatłaczające spowalniają
dyfuzję bardziej niż kuliste, a twarde bardziej niż miękkie, ale nie w przypadku wydłużonych
cząstek dyfundujących.

Aby zmniejszyć koszt obliczeniowy, wiele badań uwzględnia oddziaływania hydrodyna-
miczne używając (uogólnionego) przybliżenia Rotne-Pragera-Yamakawy (RPY, lub dalekiego
pola), zaniedbując efekty lubrykacyjne bliskiego pola. W niniejszej rozprawie przedstawiamy
otwarty program komputerowy (pyBrown), który uwzględnia zarówno oddziaływania hydrody-
namiczne bliskiego, jak i dalekiego pola. Używając tego programu pokazujemy, że popularne
przybliżenie RPY wyraźnie zawyża współczynniki dyfuzji makrocząsteczek w zatłoczonym
środowisku. Ponadto przybliżenie RPY może dostarczyć nawet mniej dokładnych wyników
niż symulacje bez oddziaływań hydrodynamicznych w ogóle.

Żywa komórka jest układem nierównowagowym, w którym nieustannie zachodzi wiele re-
akcji chemicznych. Dlatego też kolejnym istotnym aspektem komputerowego modelowania
komórek jest uwzględnienie sprzężenia dyfuzji i reakcji. Za pomocą symulacji dynamiki brow-
nowskiej badamy wpływ zatłoczenia na przyspieszenie dyfuzji enzymów w wyniku katalizy,
które niedawno zaobserwowano w rozcieńczonych układach (tj. bez zatłoczenia). Rozważamy
model enzymu, który kurczy się po związaniu substratu i wykazujemy, że takie enzymy przeja-
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wiają przyspieszoną dyfuzję również w zatłoczonym środowisku. Efekt przyspieszenia dyfuzji
rośnie gdy zatłoczenie jest spowodowane przez enzymy, ale maleje gdy jest spowodowane przez
nieaktywne cząsteczki. Katalitycznie aktywne enzymy przyspieszają również dyfuzję nieak-
tywnych cząsteczek. Jedną z metod badania takiego przyspieszenia dyfuzji może być pomiar
w układach mikroprzepływowych o geometrii w kształcie litery H. Przeprowadzamy projekt
takiego eksperymentu i badamy w jakich warunkach umożliwia on zbadanie przyspieszonej
dyfuzji enzymów.

Od czasu przełomowych prac Mintona wiadomo, że zatłoczenie wpływa na równowagi che-
miczne i kinetykę reakcji. Jednak nasze zrozumienie tego, jak przebiegają reakcje w warunkach
zatłoczenia jest wciąż ograniczone. W niniejszej pracy badamy kinetykę reakcji katalizowanych
przez enzymy zmieniające konformację w cyklu katalitycznym oraz wpływ zatłoczenia na te
reakcje. Korzystając z teorii cząstki skalowanej (scaled particle theory, SPT) wyprowadzamy
wyrażenie wiążące ze sobą zmianę szybkości reakcji w zatłoczeniu i czynniki geometryczne
opisujące jak enzym zmienia kształt podczas obrotu katalitycznego. Wyniki te testujemy za
pomocą symulacji dynamiki brownowskiej dla modelu enzymu składającego się z dwóch kulek
zmieniających swoją odległość równowagową po związaniu substratu.

Reakcje multiwalentnego wiązania odgrywają istotną rolę w wielu procesach podtrzymują-
cych życie i zagrażających mu, od wiązania przeciwciał z antygenami w odpowiedzi immuno-
logicznej po agregację amyloidu. Chociaż takie reakcje często zachodzą w warunkach zatło-
czenia, jego wpływ na ich równowagi nie jest w pełni zrozumiany. W tej rozprawie badamy
kooperatywność wiązania diwalentnego – ważną miarę opisującą jak wiązanie w jednym miej-
scu aktywnym wpływa na powinowactwo pozostałych miejsc aktywnych – używając SPT oraz
podejścia łączącego całkowanie Monte Carlo i dynamikę brownowską. Pokazujemy, że zatło-
czenie może zwiększać lub zmniejszać kooperatywność w zależności od tego jak konformacja
makrocząsteczki zmienia się w kolejnych etapach wiązania. W szczególności, stwierdzamy że
reakcje niekooperatywne mogą stać się kooperatywne w warunkach zatłoczenia i odwrotnie.
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Chapter 1

Introduction

The ultimate aim of the modern movement in biology is to explain all biology in

terms of physics and chemistry.

Francis Crick

A central theme of the work described in this Thesis is to study macromolecular diffusion
and chemical equilibria in diverse, crowded environments akin to biological cells, particularly
concerning the total concentration and other, more subtle features, e.g., shape, softness, and en-
zymatic activity of its constituents. In this introductory section, I first present the motivation for
this work (Section 1.1), and then provide an overview of the proceeding chapters (Section 1.2).

1.1 Motivation

Recent decades have brought huge advances in experimental techniques such as super-resolution
fluorescence microscopy (SRFM) [1], cryo-electron microscopy (cryo-EM), and cryo-electron
tomography (cryo-ET), which allow for obtaining high-resolution images of living cells and
observing their macromolecular constituents therein [2]. Results obtained using these cutting-
edge methods provide the scientific community with data concerning not only the structure of
the cells but also the dynamics of their building blocks. The number of examples grows quickly
and includes, among others, visualization of endoplasmic reticulum-associated degradation in
the unicellular alga [3] and cytoplasmic translational machinery in HeLa cells [4]. The major
advantage of these novel methods is that in contrast to X-ray crystallography, which demands
cumbersome and time-consuming protocols to isolate the macromolecules of interest and pre-
pare their crystal samples, cryo-EM and SRFM image them directly in their native environment,
with all of its extraordinary and fascinating features.

The most striking feature of biological cells is that they are overcrowded with diverse
biomacromolecules (Fig. 1.1) [5–8]. For instance, approximately 34-44% of Escherichia coli

cytoplasm volume is occupied by macromolecules [9], which makes it, paraphrasing Skolnick,
crowded to a similar extent to Times Square on New Year’s Eve [10]. Such crowding im-
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Figure 1.1: Image of crowded intracellular environment obtained using cryo-ET. It
presents cytosolic protein degradation machinery that removes the potentially harmful, mis-
folded proteins from the endoplasmic reticulum. It consists of proteasomes (red) and Cdc48
proteins (yellow). Moreover, we can see cytosolic (light blue) and membrane-bound (blue)
ribosomes. Figure reprinted from ref. [3].

pacts the physical chemistry of the intracellular milieu in a complex way [11–19]. Apart from
macromolecular crowding, there are also other interesting features of cellular compartments.
In particular, a cell is a non-equilibrium system, and changes in metabolic activity reportedly
glassificate its cytoplasm [20, 21].

The aforementioned quickly growing body of high-resolution cell images leads to the emer-
gence of a more precise picture of the biological cells at the nanoscale. In some sense, it is
analogous to the accurate and solicitous astronomical observations of XVIth-century Danish
astronomer Tycho Brahe, who authored the famous star catalog and noted the precise posi-
tions of planets over many years [22]. These experimental results then paved the way for his
more broadly recognized successors: Johannes Kepler (assistant of Tycho Brahe) and sir Isaac
Newton, who revolutionized science by finding general laws governing celestial mechanics

(Fig. 1.2).
Nowadays, one of the grand challenges of the XXIst-century science in general, and compu-

tational biophysics in particular, is the development of computer code simulating the biological
cell in a quantitative and predictive way [24–29], which we could name “CELLestial” me-

chanics. While the “stars” of cellular biophysics, i.e., protein structures, are to a large extent
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Figure 1.2: Celestial mechanics – wood engraving. The Flammarion engraving by unknown
artist. It was originally published by Flammarion [23]. Photographic reproduction source:
https://en.wikipedia.org/wiki/File:Flammarion.jpg.

cataloged, thanks to ambitious projects such as AlphaFold [30] and Protein Data Bank (PDB)
[31], the latter of which recently celebrated its 50th birthday [32], the tracks over which the
“CELLestial” bodies move are still missing. Such a piece of code, embodying our best knowl-
edge of the laws governing the intracellular mechanics, would be a great tool in many areas of
research and technology, including bioengineering, precision medicine, and the origin of life
research.

Cell inner workings stem from the microscopic dynamics of the macromolecules constitut-
ing it, such as proteins, ribosomes, and nucleic acids. However, although we are undoubtedly
at the dawn of the exascale computing era, the first-principle simulations of whole cells are
currently unattainable and will probably remain so in the coming years. Netz & Eaton [33]
estimated that it would take ca. 1 billion years to run such a simulation of one of the tiniest
unicellular organisms, Mycoplasma genitalium (≈ 3 · 109 atoms), for the duration of its dou-
bling time, which is ca. 2 hours. Assuming that the exponential rise of computational power
will continue in line with Moore’s law (≈ 10-fold increase every 5 years), which is somewhat
unrealistic [34], these simulations would become feasible no earlier than 50 years from now.
Even the much more coarse-grained treatments, such as Brownian dynamics (BD) and Stoke-
sian dynamics (SD), are currently at the limit of our computational capabilities when applied to
small fragments of cytoplasm [35–38]. Because of that, Netz & Eaton [33] pointed out that, so
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far, it is much more feasible to employ reaction-diffusion equations to these types of problems,
which for equivalent systems could be solved in a month timescale.

In reaction-diffusion systems, the major bottleneck is not in computation per se but instead
in gathering all the relevant information about diffusion and reaction properties from indepen-
dent experiments and calculations. This information cannot be obtained by in vitro experiments
or small-scale simulations unless we understand in detail how they are affected when molecules

and reactions are transferred to the intracellular environment by, among other factors, macro-

molecular crowding. This fact motivates the research on generic effects of crowding on macro-
molecular diffusion, chemical equilibria, and reaction kinetics.

1.2 Outline

This Thesis is organized in the following way.

• In Chapter 2, I cover the concepts fundamental to the scope of this Thesis, which are:
Brownian motion, anomalous diffusion, macromolecular crowding, and chemical equi-
libria.

• In Chapter 3, I present the computational methods we used to carry out the research
presented in this Thesis, viz., Brownian dynamics, Stokesian dynamics, and Monte Carlo
integration.

• Chapter 4 is devoted to macromolecular diffusion in crowded environments. This chapter
provides an extensive literature review covering the experimental measurements of dif-
fusion in vivo, as well as experimental and theoretical studies aimed at elucidating the
physicochemical reasons for the observed diffusion slowdown. Previous studies focused
mainly on the dependence of the diffusion coefficient on the occupied volume. In this
Thesis, the diffusion slowdown is decomposed into contributions from two kinds of hy-
drodynamic interactions, showing that the popular approach to account for them substan-
tially overestimates the diffusion coefficients in crowded environments. Furthermore, the
chapter covers the research performed in collaboration with our experimental colleagues
from RWTH Aachen University. We single out the effect of crowder shape on diffusion
in crowded environments and hypothesize about the role of hitherto unknown attractive
interactions between the diffusing molecule and crowders in the experimentally observed
unexpectedly slow diffusion. Finally, I describe the effect of crowder softness on diffu-
sion, with particular emphasis on its dependence on the shape of diffusing molecule.

• In Chapter 5, we explore an enhanced enzyme diffusion, which is an increase in the dif-
fusion coefficient of an enzyme in the presence of substrates of the reaction it catalyzes.
Previous studies reported this phenomenon for various enzymes, but its existence is still
heavily debated, and overall, the research so far has generated more heat than light. Here,
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the effect of macromolecular crowding on this phenomenon is discussed, which has never
been done before. Moreover, I describe the rational design of H-cell measurement for
detecting enhanced enzyme diffusion, and discuss how feasible it is to realize it experi-
mentally.

• Chapter 6 deals with the change in reaction rates and shift of chemical equilibria due to
macromolecular crowding. Previous studies investigated these effects extensively with
scaled particle theory. Here, the scaled particle theory formalism and Brownian dynam-
ics are applied to conformation-changing enzymes, showing that macroscopic chemical
kinetics measurements may give insight into the microscopic features of enzyme confor-
mations. Furthermore, the influence of crowding on the cooperativity of divalent binding
reactions is explored. In some cases, crowding may even lead to the emergence of coop-
erativity in otherwise noncooperative systems.

• Chapter 7 summarizes the results presented in this Thesis.

Appendices A–E contain technical details regarding the implementation of computational meth-
ods, applied software, and the experimental setup.
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Chapter 2

Theoretical background

A scientist would rather use someone else’s toothbrush than another scientist’s

nomenclature.

Murray Gell-Mann

2.1 Brownian motion

Brownian motion phenomenon is named after Scottish botanist Robert Brown, who in 1827
observed random, leaping movement of plant pollen suspended on the surface of water [39]
(see example Brownian trajectories in Fig. 2.1). The phenomenon was rather mysterious at
that time, and the explanation was provided only in the next century, independently by three
scholars: Albert Einstein [40], William Sutherland [41], and Marian Smoluchowski [42].

For the sake of brevity, we will not discuss the original development of the Brownian mo-
tion theory in chronological order. Readers interested in the historical aspects are referred to
comprehensive review papers published in 2005 on the occasion of the 100th anniversary of
explaining the Brownian motion [43–45]. Instead, we will start from the equation proposed by
another famous scholar of that time, Paul Langevin, in 1908 [46]. It is especially handy here, as
it is an equation of motion, and thus adheres to the computational, mechanistic approach held
throughout this Thesis.

Langevin proposed a stochastic differential equation that describes the Brownian motion in
a framework of the Newtonian dynamics:

m
d2

dt2
r = −F drag + F rand, (2.1)

where t is time, m is mass of a Brownian particle, r is its position, F drag is drag force expe-
rienced by it, and F rand is fluctuating random force acting on it. For brevity, we assume that
the Brownian motion is performed in R3, although Eq. 2.1 may be used to describe Brownian
motion in Rn for arbitrary n ∈ N+.
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Figure 2.1: Ten example trajectories of Brownian particles starting from the same point.

The idea behind Eq. 2.1 is a division of the degrees of freedom into two classes: fast –
degrees of freedom of solvent and slow – degrees of freedom of the Brownian particle. Knowing
the positions and momenta of all the particles and all the forces, it would be possible to simply
solve the coupled Newton equations explicitly for both types of particles without any need for
introducing randomness. However, the sheer number of fast degrees of freedom renders the
problem practically unsolvable. Instead, the Langevin equation accounts for the fast particles
implicitly, via drag and random forces exerted by them collectively. The formula for the drag
force acting on a sphere moving in a viscous fluid was derived by Stokes and reads [47]:

F drag = 6πηav = ξv, (2.2)

where η is a dynamic viscosity of the fluid, v = d
dt
r is the velocity of a sphere, and a is its

radius.

2.1.1 Mean squared displacement

The nature of Brownian motion is stochastic and the random force F rand does not have a pre-
ferred direction (〈F rand〉 = 0) and does not depend on the position of the particle (〈rTF rand〉 =

0, where superscript T denotes a transpose of a matrix). Because of that, we cannot use mean
displacement 〈r(t)−r(0)〉 to describe the particle’s mobility, as it is 0 regardless of the dynam-
ics of the motion. Instead, we investigate the behavior of mean squared displacement (MSD),
i.e.:

MSD(t) = 〈(r(t)− r(0))T (r(t)− r(0))〉. (2.3)
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In the course of the derivation, we assume r(0) = 0 for simplicity.
Interesting conclusions may be drawn after few ingenious transformations of the Langevin

equation proposed by Langevin himself. Firstly, Eq. 2.1 multiplied from the left by rT , with the
drag force expanded using Eq. 2.2, yields:

mrT
d2

dt2
r = −ξrT d

dt
r + rTF rand. (2.4)

Using the following properties of derivatives:

rT
d

dt
r =

1

2

d

dt

(
rTr

)
, (2.5a)

rT
d2

dt2
r =

1

2

d2

dt2
rTr −

(
d

dt
rT
)
d

dt
r, (2.5b)

we rewrite Eq. 2.4 as:

1

2
m
d2

dt2
rTr +

1

2
ξ
d

dt
rTr = mvTv + rTF rand. (2.6)

It is now difficult to progress without any further assumptions. However, we can use what
we know from thermodynamics, as we believe that the final microscopic description for t→∞
should be consistent with the predictions for the equilibrium state. From the equipartition the-
orem, we know that 〈vTv〉 = 3kBT/m, where kB is Boltzmann constant and T is temperature.
We can then ensemble-average Eq. 2.6, knowing that 〈rTF rand〉 = 0 and using MSD = 〈rTr〉,
to obtain:

1

2
m
d2

dt2
MSD +

1

2
ξ
d

dt
MSD = 3kBT, (2.7)

which after single integration gives:

d

dt
MSD = c exp

(
− ξ

m
t

)
+

6kBT

ξ
, (2.8)

where c is an arbitrary constant.
For times well beyond the momentum relaxation time, i.e., t� m/ξ, the solution of Eq. 2.7

is:

MSD(t) = 6
kBT

ξ
t = 6Dt. (2.9)

Thus, the Langevin equation at long times predicts a linear dependence of MSD on time. The
proportionality factor D is called a diffusion coefficient (compare to Eq. 2.2) and is related to
temperature T , fluid viscosity η, and sphere radius a through the Stokes-Sutherland-Einstein
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(SSE) relation:

D =
kBT

6πηa
. (2.10)

We will use Eqs. 2.9 and 2.10 frequently in this Thesis.

2.1.2 Fluctuation-dissipation theorem

Thermodynamics imposes yet another constraint on the equilibrium state (t → ∞), which
makes F rand dependent on ξ = kBT/D. To show that, for simplicity, we assume that F rand has
no memory, meaning:

〈F rand(t)TF rand(t′)〉 = 3σ2δ (t− t′) , (2.11)

where σ controls the strength of the random force, and δ(t − t′) is the Dirac delta distribution.
The lack of memory stems from a huge number of collisions per second with much smaller
solvent molecules constituting the fluid (≈ 1014 at room temperature) [48]. Direct integration
of Eq. 2.1 leads to:

v = v0 exp

(
− ξ

m
t

)
+

1

m

∫ t

0

F rand(t′) exp

[
− ξ

m
(t− t′)

]
dt′, (2.12)

where v0 is v(0). Using Eq. 2.12, we find an expression for squared velocity vTv:

vTv = vT0 v0 exp

(
−2ξ

m
t

)
+

1

m2

∫ t

0

∫ t

0

F rand(t′)TF rand(t′′) exp

[
− ξ

m
(2t− t′ − t′′)

]
dt′dt′′+

2

m
exp

(
− ξ

m
t

)
vT0

∫ t

0

F rand(t′) exp

[
− ξ

m
(t− t′)

]
dt′. (2.13)

Ensemble averaging of vTv (Eq. 2.13) using Eq. 2.11 and the following property of the
Dirac delta: ∫ b

a

f(x′)δ(x− x′)dx′ = f(x), (2.14)

where a < x < b, leads to:

〈
vTv

〉
=
〈
vT0 v0

〉
exp

(
−2ξ

m
t

)
+

3σ2

2mξ

[
1− exp

(
−2ξ

m
t

)]
. (2.15)
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Then, computing the t→∞ limit results in:

lim
t→∞
〈vTv〉 =

3σ2

2mξ
. (2.16)

To satisfy the equipartition theorem, Eq. 2.16 has to be equal to 3kBT/m, which leads to an
expression for σ:

σ =
√

2kBTξ, (2.17)

often referred to as the fluctuation-dissipation theorem. It constitutes the fundamental relation
between F drag and F rand in the Langevin equation.

2.1.3 Concluding remarks

The essential conclusions from the derivation above are: (1) after some initial time, referred to
as momentum relaxation time, the increase in MSD of an isolated Brownian particle is linear
(Eq. 2.9), which is a characteristic feature of diffusion, as compared to ballistic motion for
which it is quadratic; (2) the diffusion coefficient D depends on temperature, viscosity, and size
of a Brownian particle, as dictated by the SSE relation (Eq. 2.10). Linear dependence means
that the time τL needed, on average, to traverse distance L is:

τL =
L2

6D
. (2.18)

In other words, in order for a Brownian particle to reach a distance 10 times larger, 100 times
longer time is needed, which renders the efficiency of diffusive transport smaller and smaller
when the system size increases.

2.2 Anomalous diffusion

The classical description of Brownian motion provided by Einstein, Sutherland, Smoluchowski,
and Langevin, and summarized in Section 2.1, explains the motion of dilute particles suspended
in simple, homogeneous fluids. However, there are physical systems driven by random forces, in
which the tracked particle’s MSD is not a linear function of time (compare to Eq. 2.9). Examples
of such behavior are numerous and include, e.g., diffusion of enzymes in lipid membranes [49]
and mRNA in Escherichia coli cytoplasm [50].

There are two assumptions guaranteeing the linear dependence of Brownian particle’s MSD
on time: (1) the lack of memory, i.e., consecutive steps are statistically independent (Eq. 2.11),
(2) the existence of MSD for a single step, i.e., the mean of the step length probability density
distribution exists. If an MSD deviates from linearity, then at least one of these two assumptions
does not hold. We refer to this phenomenon as anomalous diffusion.
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Figure 2.2: Comparison of MSD for anomalous (α = 0.5, 1.5) and normal (α = 1) diffusion.

A detailed discussion of the mathematical formalism used to describe anomalous diffusion
is beyond the scope of this Thesis. An interested reader is referred to review papers elaborating
on that topic [45, 51–54]. Below, we focus only on the behavior of MSD.

Eq. 2.9 can be generalized to a power law to account for the anomalous behavior:

MSD(t) = 6Γt

(
t

t0

)α−1

, (2.19)

where Γ is a generalized diffusion coefficient, t0 is a characteristic timescale, and α is an anoma-
lous exponent. Sometimes Eq. 2.19 is expressed with Γ/tα−1

0 compressed into a single constant,
but then its dimension is α-dependent.

When α > 1, the process is superdiffusive because for t � t0 the diffusion coefficient
appears to increase with time; when α < 1, the process is subdiffusive because for t � t0 the
diffusion coefficient appears to decrease with time. For α = 1, Eq. 2.19 reduces to Eq. 2.9, i.e.,
normal diffusion (Brownian motion), with D = Γ. All three cases are compared in Fig. 2.2.

There are various physical mechanisms responsible for the emergence of anomalous dif-
fusion, among others, active transport of particles by motor proteins [54], binding sites acting
as traps for the diffusing particles [55], macromolecular crowding (Section 2.3) [56, 57], and
viscoelastic properties of the medium [52, 58]. The overall behavior of MSD may be even more
complex and impossible to express by a single power law.

2.3 Macromolecular crowding

The primary observation made through various imaging techniques, as visualized in renowned
illustrations by Goodsell [6, 7], is that the cytoplasm is highly crowded by diverse macro-
molecules. The total macromolecular mass concentration is 17-35 % of cell’s entire weight
[5]. In particular, the total macromolecular concentration in E. coli was estimated to be 300-
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400 mg mL−1 [9]. The intracellular space is then approximately an order of magnitude more
concentrated than, e.g., typical seawater (in terms of mass concentration of salt). However,
a handful of compounds are concentrated therein, as the macromolecular content is divided
among thousands of different chemicals, which are often present in small copy numbers. For
instance, in E. coli, tRNA is ≈ 500 µM (≈ 300000 copies), ribosome is ≈ 50 µM (≈ 30000

copies), RNA polymerase is ≈ 10 µM (≈ 6000 copies), and mRNA is ≈ 4 µM (≈ 2400 copies)
[6]. That is why the term macromolecular crowding was coined to connect the realm of con-
centrated solutions to those in which no specie is necessarily concentrated per se, but by their
multitude, in total, the solution behaves as concentrated.

2.3.1 Occupied volume

A useful but simplistic approach to describe crowded systems is to approximate all these macro-
molecules by hard bodies of certain sizes, e.g., by hard spheres. For hard bodies, the potential
energy is infinite when the bodies overlap with each other and zero otherwise (Eq. A.6). The
concentration of such mixtures may be expressed by occupied volume fraction φocc, which is
the volume occupied by all hard spheres divided by the total volume of the system V:

φocc =
4π

3

1

V
M∑
k=1

Nka
3
k, (2.20)

where k runs over all different molecule types,Nk is the number of k-th molecules in the system,
and ak is k-th molecule’s radius.

2.3.2 Excluded volume

Even if two systems are characterized by equal occupied volume fraction, it does not mean
that all that volume is equally accessible to the center of geometry of any particle. From the
perspective of an arbitrary particle i, the volume inaccessible to its center of geometry is called
excluded volume and its ratio to the total system volume V is excluded volume fraction φex,i.
Concepts of occupied and excluded volume are visually presented in Fig. 2.3.

The volume excluded by a sphere of radius ai to a sphere of radius aj (and vice versa) is:

Vex,ij =
4

3
π(ai + aj)

3. (2.21)

In contrast to occupied volume, excluded volume is not additive because excluded volumes of
many hard particles may mutually overlap (Fig. 2.3c). Hence, computing φex in dense systems
is not as straightforward as φocc (compare to Eq. 2.20). However, one can harness numerical
methods such as Monte Carlo integration for that purpose (Section 3.3).

For a given system in a given configuration, excluded volume φex depends on the size and
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a

occupied volume

b

volume excluded
to a small particle

c

volume excluded
to a larger particle

Figure 2.3: Concepts of occupied and excluded volume. (a) Volume occupied by a sphere
(red, above) and an arbitrary configuration of these spheres (below). Spheres are hard and hence
cannot overlap. (b) Volume excluded by a sphere (red, above) and an arbitrary configuration of
these spheres to a small particle (black). (c) The same as (b) but for a larger particle.

shape of a particle to which the volume is excluded. Moreover, it depends on the sizes and
shapes of the crowders. Note that the occupied volume is the volume excluded to a point
particle. In the context of crowding, the distinction between occupied and excluded volume is
of utmost importance, and leads to several interesting effects (Sections 4.3 and 4.5).

2.3.3 Occupied volume inside biological cells

The macromolecular content of biological cells is commonly estimated to reach 20-30 % of
their total volume [8]. For E. coli, Zimmerman & Trach [9] found φocc ≈ 34-44 % by perform-
ing composition measurements of cell extracts and then carefully accounting for differences
between the extracts and the parent cytoplasm. This φocc is closer to a crystal than to a dilute
solution, as for equally sized spheres, the phase transition from a fluid to an FCC solid is at
φocc ≈ 54% [59]. CyberCell Database [60] (currently down, but the data still available at BioN-
umbers [61]; BNID: 100045, 100046, 100050, 100051) provides fractions of E. coli cell volume
occupied by specific families of macromolecules (Fig. 2.4). Among these, proteins constitute
the majority (17 %), followed by ribosomes (8 %) and nucleic acids (7 %).

The occupied volume is roughly three times smaller in the eukaryotic cell cytoplasm, proba-
bly because they are much larger than prokaryotic ones and in part due to compartmentalization
[62]. It is worth mentioning that the analysis of electron micrographs by Gershon et al. [63]
indicated that 16-20% of PTK (cell line derived from male long-nosed potoroo epithelial kidney
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Figure 2.4: Estimated fraction of the E. coli’s cytoplasm volume occupied by various
families of macromolecules. Data accessible at BioNumbers database [61]; BNID: 100045,
100046, 100050, 100051.

cells) cell volume is occupied by various elements of the cytoskeleton, which seemingly con-
tradicts the claim about significantly smaller φocc in eukaryotic cells. However, this estimate is
now considered incorrect as a significant fraction of the observed structures that were counted
into φocc turned out to be merely artifacts of the preparative method [64].

One comment is worth adding here. Although it is a common practice to treat proteins and
polymers as spheres of some effective radii, there is some freedom in choosing these radii, es-
pecially for significantly nonspherical entities. Nonetheless, such a treatment works reasonably
well to describe the changes in thermodynamics and kinetics of proteins upon moving them to
a crowded environment. For example, it leads to the correct reproduction of the experimen-
tal dependence of osmotic pressure, sedimentation equilibriumm and light scattering data of
hemoglobin and serum albumin solutions over a broad range of concentrations [12]. The rea-
son is the averaging over all mutual orientations of interacting macromolecules, which leads to
canceling out subtle effects of local attractions and repulsions, leaving the steric volume exclu-
sion as the primary effect, possibly with slightly modified radii of the hard spheres. However,
this reasoning holds only if the long-range electrostatic interactions are absent or effectively
screened. Ando & Skolnick [36] confirmed the validity of the effective sphere approximation in
simulations of E. coli cytoplasm, where replacing rigid macromolecular models for the effective
spheres led to only minor differences in their diffusion coefficients. For these reasons, effec-
tive sphere models have been successfully employed in so many studies. The question remains,
however, whether this approximation holds for significantly nonspherical macromolecules, such
as dsDNA or mRNA. We will discuss this issue in Section 4.3.
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2.4 Chemical equilibria

A description of the macromolecular mobility alone is far from sufficient to understand how
living cells work. Their functioning is based on chemical reactions that take place in them. It
turns out that these reactions may proceed differently in the cellular environment than in a test
tube [17, 18]. Although biological systems are fundamentally non-equilibrium, a description in
the language of equilibrium constants, popularized by Allen Minton [12, 17, 18, 65], makes it
possible to understand and quantify these differences.

Let us consider a general chemical reaction:

|ν1 |X1 + |ν2 |X2 + ...+ |νNr |XNr

K0−−⇀↽−− νNr+1 XNr+1 + ...+ νNr+Np XNr+Np (2.22)

where νi is a stoichiometric coefficient of the reagent Xi (negative for reactants, positive for
products), Nr is a number of reactants and Np is a number of products. In the limit of infinite
dilution, the concentrations [i] of the reagents in chemical equilibrium are related via equilib-
rium constant K0:

K0 (T, p) =

Nr+Np∏
i=1

[i]νi , (2.23)

where T and p are temperature and pressure, respectively. In turn, the equilibrium constant K0

is related to the free energy change of reaction ∆F :

∆F = −kBT lnK0, (2.24)

where kB is a Boltzmann constant. If the assumption of a very low concentration of the reagents
does not hold, Eq. 2.23 breaks down. There are two distinct approaches to correct for that.

One approach is to say that the equilibrium constant does not change, but instead of relating
concentrations, it relates activities {i} defined as follows:

{i} = γi [i] , (2.25)

where γi is an activity coefficient of i-th reagent in equilibrium that depends on the concentra-
tions of all species and tends to unity in infinite dilution. Then a thermodynamic equilibrium
constant is:

K0 (T, p) =

Nr+Np∏
i=1

{i}νi , (2.26)

regardless of the concentrations of all species.
The alternative approach is to say that the free energy of a reaction ∆F changes by a value
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∆∆F and, in consequence, following Eq. 2.24, the equilibrium constant of the reaction changes
as well. By virtue of that, the new composition-dependent equilibrium constant K(T, p, {[i]})
remains a relation connecting concentrations, not activities. K is called an apparent equilibrium
constant and reads:

K = K0

Nr+Np∏
i=1

γ−νii . (2.27)

Both approaches are equivalent and related via:

∆∆F = −kBT ln

Nr+Np∏
i=1

γ−νii =

Nr+Np∑
i=1

νi∆Fi, (2.28)

where ∆Fi = kBT ln γi are additive contributions to ∆∆F from each reagent.

2.4.1 Effect of macromolecular crowding

To study the effect of crowding, we assume that all reagents are in infinite dilution, but apart
from them, there is a high concentration of inert crowders, which indirectly affect the chemical
equilibrium through excluded volume. By virtue of that, in the activity-approach we can say
that γi depend only on the concentration of the inert crowders measured by the occupied vol-
ume fraction φocc (Section 2.3.1). Similarly, we can say that the apparent equilibrium constant
depends, apart from T and p, also on φocc.

To find the physical interpretation of ∆Fi (Eq. 2.28) in such scenario, we consider a thermo-
dynamic cycle including the same reaction in a dilute solution and in a crowded environment
(Fig. 2.5). Since the free energy is a function of state, it is clear that ∆Fi expresses the free
energy of inserting i-th reagent into the crowded system.

To find ∆Fi, we turn to statistical mechanics, in which the apparent equilibrium constant
may be expressed using molecular partition functions qi [66]

K =

Nr+Np∏
i=1

(qi
V
)νi

, (2.29)

where V is the volume of the system. We consider molecule i to consist of ni beads. Then,
molecular partition function qi in the classical limit reads:

qi = h−3ni

∫
. . .

∫
exp (−βHi)

ni∏
j=1

dpjdrj, (2.30)

where h is Planck’s constant, β = 1/kBT is the inverse thermal energy, and pj and rj are the
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Figure 2.5: Thermodynamic cycle of a reaction in a crowded system. For clarity, a chemical
reaction of the form A + B −−→ C is shown, but a similar cycle may be constructed for any
reaction. Horizontal arrows denote the reaction in dilution (upper half of the cycle) and upon
macromolecular crowding (lower half of the cycle). Vertical arrows denote “pseudoreactions”
of inserting each reagent into a crowded system.

momentum and position of bead j. Hi is the molecular Hamiltonian of the molecule i:

Hi =

ni∑
j=1

pTj pj
2mj

+ Ui ({rj}) , (2.31)

with mj being a mass of j-th bead and Ui being an intramolecular potential energy.
Upon introducing N immobile hard spheres of radii acr,k at positions Rk, the Hamiltonian

changes to:

Hi (φocc) = Hi +

ni∑
j=1

N∑
k=1

V (rj −Rk), (2.32)

where V is the reagent-crowder interaction potential. The set of positions Rk represents a
particular configuration of crowders. Thus, the molecular partition function in a crowded system
is an ensemble average of qi(φocc) over all crowder configurations:

qi(φocc) = h−3ni

〈∫
. . .

∫
exp [−βHi (φocc)]

ni∏
j=1

dpjdrj

〉
cr

. (2.33)

For our purposes, the crucial quantity is a ratio of the apparent equilibrium constants with

17



and without crowders, the latter being equal to thermodynamic equilibrium constant K0, i.e.:

K (φocc)

K0

=

Nr+Np∏
i=1

γ−νii =

Nr+Np∏
i=1

(
qi (φocc)

qi (0)

)νi
. (2.34)

The ratio of partition functions with and without crowding amounts to:

qi (φocc)

qi (0)
=

〈∫
. . .
∫

exp (−βHi) exp
[
−β∑ni

j=1

∑N
k=1 V (rj −Rk)

]∏ni

j=1 dpjdrj

〉
cr∫

. . .
∫

exp (−βHi)
∏ni

j=1 dpjdrj
,

(2.35)

which, upon integrating out the momentum degrees of freedom, simplifies to:

qi (φocc)

qi (0)
=

〈∫
. . .
∫

exp [−βUi ({rj})] exp
[
−β∑ni

j=1

∑N
k=1 V (rj −Rk)

]∏ni

j=1 drj

〉
cr∫

. . .
∫

exp [−βUi ({rj})]
∏ni

j=1 drj
.

(2.36)

For hard-sphere interactions between reagents and crowders, V = VHS (Eq. A.6), and
Eq. 2.36 has an intuitive physical interpretation. For a single-bead molecule (ni = 1), Eq. 2.36
reduces to

qHS
i (φocc)

qi (0)
=
〈
∫∫∫

V exp
[
−β∑N

k=1 VHS(r1 −Rk)
]
dx1dy1dz1〉∫∫∫

V dx1dy1dz1

= 1− φex,i, (2.37)

where φex,i is the excluded volume introduced in Section 2.3. Inserting Eq. 2.37 and Eq. 2.29
into Eq. 2.34, yields:

K(φocc)

K0

=

Nr+Np∏
i=1

(1− φex,i)
νi . (2.38)

with:

γi =
1

1− φex,i

. (2.39)

Inserting Eq. 2.39 into the definition of activity (Eq. 2.25) results in:

{i} = γi [i] =
Ni

(1− φex,i)V
=
Ni
Vacc,i

, (2.40)

Thus, the thermodynamic activity of a molecule of species i is given by the number of molecules
Ni divided by the volume Vacc,i accessible to them. It means that hard crowders merely reduce
the size of the system, but to a different extent depending on the molecule size and shape. For
molecules much smaller than the crowders, φex,i ≈ φocc and the accessible volume approaches
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the unoccupied volume.

2.4.2 Scaled particle theory

One way to approach the integral in Eq. 2.36 is to use Monte Carlo (MC) integration (Sec-
tion 3.3). An alternative approach is to construct some approximations, which can be done for
hard-sphere reagent-crowder interactions [67–70].

Assuming that a reagent i and crowders are hard spheres of radii ai and acr, respectively,
and ignoring overlaps between excluded volumes, to a first approximation, expressing Eq. 2.39
using Eq. 2.21 leads to:

ln γi = − ln (1− φex,i) ≈ − ln

[
1− 4

3
π
N

V (acr + ai)
3

]
. (2.41)

Transforming Eq. 2.41 and expanding in MacLaurin series up to the second order in ai and g,
where

g =
φocc

1− φocc

, (2.42)

leads to the following expression:

ln γi = ln (1 + g) +

(
3ai
acr

+
3a2

i

a2
cr

)
g +

9a2
i

2a2
cr

g2, (2.43)

which is the basic result of scaled particle theory (SPT) [71]. SPT loses accuracy with increase
of φocc and decrease of crowder size, as Eq. 2.21 breaks down when excluded volumes start to
mutually overlap.

A better approximation is offered by the generalized SPT [12, 70], which includes also the
third order terms and applies to crowders of various convex shapes. In the generalized SPT, the
activity coefficients are [12]:

ln γi = ln (1 + g) + (1 + g) (Hi 〈〈S〉〉+ Si 〈〈H〉〉+ Vi 〈〈1〉〉) +

1

2
(1 + g)2

(
H2
i 〈〈S〉〉2 + 2Vi 〈〈H〉〉 〈〈S〉〉

)
+

1

3
(1 + g)3Vi

〈〈
H2
〉〉
〈〈S〉〉2 (2.44)

where Vi, Si, and Hi are the i-th particle’s volume, surface area, and Kihara parameter (half of
the orientation-averaged projection of the particle onto a single axis), respectively. For a generic
observable G,

〈〈G〉〉 =
1

V
M∑
k=1

NkGk, (2.45)

whereM is the number of different types of crowders, andNk is the number of crowders of type
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k. Note that 〈〈H2〉〉 = (1/V)
∑M

k=1NkH
2
k 6= 〈〈H〉〉2 and that 〈〈1〉〉 = N/V is the concentration

of crowders.
When all the crowders are spheres, we can simplify Eq. 2.44 to:

ln γi = ln (1 + g) +

(
3Hi

Hcr

+
3Si
Scr

+
Vi
Vcr

)
g +

(
9H2

i

2H2
cr

+
3Vi
Vcr

)
g2 +

3Vi
Vcr

g3. (2.46)

Additionally, when i-th molecule is a sphere as well, we can fuurther simplify Eq. 2.46 by
using the explicit expressions for the volumes, surface areas and Kihara parameters (for spheres
H = a) in the following way:

ln γi = ln (1 + g) +

(
3ai
acr

+
3a2

i

a2
cr

+
a3
i

a3
cr

)
g +

(
9a2

i

2a2
cr

+
3a3

i

a3
cr

)
g2 +

3a3
i

a3
cr

g3. (2.47)

Equation 2.47 is an improved version of Eq. 2.43. We will use generalized SPT to compute
reaction rates of enzymatic reactions (Section 6.2) and the cooperativity parameters of divalent
binding reactions (Section 6.3).
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Chapter 3

Methods

The inside of a computer is as dumb as hell but it goes like mad!

Richard Feynman

3.1 Brownian dynamics simulations

Probably the most straightforward approach to simulations of biological systems is molecu-
lar dynamics (MD). In MD, one applies the Newtonian equations of motion to atoms and
molecules. Despite huge development in this field [72, 73], demonstrated, for instance, by its
role in understanding the workings of SARS-CoV-2 spike protein [74], it is still challenging to
reach with that method timescales characteristic to many important biological phenomena [33].

There are various approaches to decrease the computational cost of MD simulations. One
approach has been discussed in Section 2.1 and consists in implicit modeling of the solvent
molecules through stochastic and drag forces (Eq. 2.1). The second approach is to coarse-grain
a system, i.e., represent multiple atoms, polymeric subunits or even whole biomacromolecules
with single beads in order to reduce the number of degrees of freedom. The hierarchy of ap-
proximations in biomolecular modeling is shown in Fig. 3.1.

Brownian dynamics (BD) is a simulation method used specifically to study mesoscopic
systems, for which it would be computationally too costly to perform quantum mechanics/-
molecular mechanics (QM/MM) or MD simulations. It was devised and first used in 1978 by
Ermak & McCammon [75] and since has been applied to a number of problems, most notably
to simulate bacterial cytoplasm [36, 37] and cell adhesion [76]. The interested reader is referred
to review papers elaborating on BD applications [77–79].

BD stems from the Langevin dynamics (LD) governed by Eq. 2.1. The additional assump-
tion on top of the ones described in Section 2.1 is that the friction term is very large compared to
the particle mass, which leads to a quick relaxation of macromolecules’ momenta gained by the
action of the random force. In hydrodynamic terms, this corresponds to low Reynolds numbers
characteristic to small bodies (cellular and subcellular scale) in viscous fluids [80].
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Figure 3.1: Hierarchy of approaches used in biomolecular modeling. Brownian dynamics
(BD), Langevin dynamics (LD), molecular dynamics (MD), and quantum mechanics/molecular
mechanics (QM/MM) ordered according to their computational cost, accuracy, and level of
coarse-graining involved. In QM/MM and MD, particles are usually fine-grained and the water
molecules are included explicitly. In LD and BD, particles are usually coarse-grained and the
water molecules are included implicitly.

In such an overdamped limit, the Langevin equation reads:

−ξ d
dt
r + F +

√
2kBTξX(t) = 0, (3.1)

where F is a deterministic force acting on Brownian particle (which we silently assumed 0

in Section 2.1), and X(t) is a 3-dimensional standard white-noise stochastic process, i.e., δ-
correlated process with zero mean and unit variance representing the direction of F rand. Equa-
tion 3.1 may be reformulated as:

d

dt
r =

1

ξ
F +

√
2
kBT

ξ
X =

D

kBT
F +

√
2DX, (3.2)

where we used Eq. 2.9 to introduce the diffusion coefficient.
For a system of N Brownian particles, with generally different diffusion coefficients, r and

F are block vectors, i.e., 3N -dimensional vectors, which may be understood as N -dimensional
vectors with 3-dimensional entries (sometimes called supervectors). Similarly, D becomes a
block matrixD, with 3× 3 blocks:

Dij = δij
kBT

6πηai
I, (3.3)

where I is an identity matrix, ai is a hydrodynamic radius of i-th particle, and δij is the Kro-
necker delta.

22



The equation of motion in a matrix form reads:

d

dt
r =

1

kBT
DF +

√
2DX. (3.4)

Here, D may be understood as a covariance matrix of the random force, up to a factor of 2,
and its square root, in case D is diagonal, is simply a matrix of square roots of the respective
elements. The BD with diagonal D is referred to as free-draining approximation [10]. Imple-
mentation of Eq. 3.4 is discussed in Appendix A.

3.2 Hydrodynamic interactions

To accurately describe systems consisting of many Brownian particles, it is necessary to take
into account hydrodynamic interactions between them [10]. Hydrodynamic interactions are in-
direct interactions between the particles mediated by the motion of a fluid. They arise due to
the fluid flows emerging as a result of particles’ motion. One may understand it as follows:
when two particles are close to each other, it is no longer true that their motions are statistically
independent. Note that the equilibrium properties of the system are not affected by hydrody-
namic interactions, as the steady-state solution of the corresponding Fokker-Planck equation is
the Boltzmann distribution [75].

Hydrodynamic interactions are included in BD by modifying diffusion matrix D with re-
spect to its free-draining form (Eq. 3.3). There are several methods to compute D accounting
for them. One often considers two distinct contributions: far-field (long-range) and near-field
(short-range). Originally, Ermak & McCammon [75] accounted only for the far-field hydrody-
namic interactions, and the progress in including near-field ones came later [81–84].

3.2.1 Far-field hydrodynamic interactions

Far-field hydrodynamic interactions do not affect the diagonal blocks of D but give rise to
off-diagonal blocks, which statistically correlate the random forces acting on particles in the
close proximity and make particles experience the deterministic forces felt by the particles in
their vicinity. The first approximation to off-diagonal blocks may be obtained by computing the
effect of the velocity field around a point particle on the velocity field in the arbitrary point of
the fluid using the Stokes equation [85]. This results in Oseen matrix or Oseen approximation
(i 6= j):

Dij =
kBT

8πηrij

(
I +

rijr
T
ij

r2
ij

)
=

kBT

8πηrij

(
I + r̂ij r̂

T
ij

)
, (3.5)

where rij is a vector pointing from i-th particle to j-th particle. rij is its length, r̂ij = rij/rij ,
and r̂ij r̂Tij is a projection matrix onto the axis connecting particle centers.
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This approximation can be iteratively corrected to account for nonzero volume of the hy-
drodynamically interacting particles. The consecutive corrections take form of powers of 1/rij

[85]. The first iteration step applied to the hydrodynamic interactions between two spheres
yields the so-called Rotne-Prager-Yamakawa (RPY) matrix [86, 87]:

Dij =
kBT

8πηrij

[(
1 +

2a2
i

3r2
ij

)
I +

(
1− 2a2

i

r2
ij

)
r̂ij r̂

T
ij

]
. (3.6)

The generalized RPY approximation [88, 89] additionally allows for different sphere radii
and their overlaps. The formula reads:

Dij(rij) =
kBT

8πηrij

[(
1 +

a2
i + a2

j

3r2
ij

)
I +

(
1− a2

i + a2
j

r2
ij

)
r̂ij r̂

T
ij

]
(3.7a)

for rij > ai + aj and

Dij(rij) =
kBT

8πηrij

[
16r3

ij(ai + aj)− [(ai − aj)2 + 3r2
ij]

2

32r3
ij

I +
3[(ai − aj)2 − r2

ij]
2

32r3
ij

r̂ij r̂
T
ij

]
(3.7b)

for aMij − amij < rij < ai + aj , where aMij = max(ai, aj) and amij = min(ai, aj). Finally:

Dij =
kBT

6πηaMij
I, (3.7c)

for rij < aMij − amij .
Note thatDij in Eqs. 3.5–3.7 decays as 1/rij , which results in long-range character and slow

convergence of the hydrodynamic interactions. To account for that in simulations with periodic
boundary conditions, the Ewald summation method is used, as described in Appendix B.

Due to far-field hydrodynamic interactions, the distances between particles vary more slowly.
This means that two particles are repeled when approaching each other and attracted when mov-
ing apart.

3.2.2 Near-field hydrodynamic interactions

The Ewald-summated RPY diffusion matrix describes only the two-body far-field hydrody-
namic interactions. Stokesian dynamics (SD) [81–84] corrects the far-field diffusion matrix for
the two-body near-field and the many-body far-field effects. Here, we will focus only on the so-
called F-formulation of SD, i.e., we will ignore the degrees of freedom other than positions in
space (in particular, orientations). This approximation, although ignoring the coupling between
the rotational and translational mobilities, was demonstrated to correctly describe hard-sphere
suspensions [82].

A fundamental concept in SD is a resistance matrix ξ, which is related to the diffusion matrix
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by the generalization of the Stokes-Sutherland-Einstein (SSE) relation (compare to Eq. 2.10):

D = kBTξ
−1. (3.8)

SD is based on the exact expression for the two-body resistance matrix ξ2B obtained by Jeffrey
& Onishi [90] (Appendix C). The procedure is as follows: N -particle Ewald-summated RPY
matrix is computed and then inverted to obtain the N -particle far-field many-body resistance
matrix ξNB

ff . While the RPY diffusion matrix involves only two-body interactions, inverting
it introduces many-body components in the resistance space [81]. Then, for particle pairs one
computes the 2-particle two-body Jeffrey-Onishi translation-translation resistance matrices ξ2B,
which contain both far-field and near-field effects, and the 2-particle two-body far-field resis-
tance matrices ξ2B

ff . All expressions needed to compute the former are gathered in Appendix C,
and the latter are computed by inverting 2-particle two-body generalized RPY diffusion matrix
(Eq. 3.7). The difference between these two gives a 2-particle (6 × 6) near-field lubrication
correction to the resistance matrix:

∆ξnf,0 = ξ2B − ξ2B
ff . (3.9)

At the next stage, the lubrication term is itself corrected using a method suggested by Ci-
chocki et al. [91] to exclude the collective motion and avoid divergence of the diffusion matrix.
The procedure is sometimes called an improved lubrication correction [36] and reads:

∆ξnf = q∆ξnf,0q
T ; (3.10a)

where:

q =
1

2

[
I −I
−I I

]
. (3.10b)

Then, the lubrication correction 6× 6 matrices ∆ξnf are added to their corresponding blocks of
the 3N × 3N ξNB

ff . Finally, the resistance matrix is inverted to obtain the lubrication-corrected
diffusion matrix. The overall scheme may be summarized in the following expression:

D = kBT
[
ξNB

ff + qT
(
ξ2B

nf − ξ2B
ff

)
q
]−1

. (3.11)

3.3 Monte Carlo integration

3.3.1 General formulation

Many problems in statistical mechanics involve multidimensional integrals. The calculation of
these integrals poses a challenge, because hardly ever we can find analytical solutions. Further-
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more, the straightforward approach to solving them numerically, i.e., defining a grid of points
and using a method like Simpson’s rule, is not feasible, because the number of grid points grows
exponentially with the dimensionality of the problem.

Alternative approach is drawing points in which the function is evaluated at random – the
Monte Carlo (MC) approach [92]. In the simplest variant (crude MC), random numbers are
drawn from a uniform random distribution over the integration volume Ω. Then the definite
integral of function f(x) over Ω may be approximated in a following way:

∫
Ω

f(x)dx ≈ VΩ

Ntot

Ntot∑
α=1

f(xα), (3.12)

where Ntot is the total number of draws of xα and VΩ =
∫

Ω
dx is the volume.

More general approach, called importance sampling, allows for drawing points from a
nonuniform random distribution. Then, the approximation of the integral reads:

∫
Ω

f(x)dx ≈ 1

Ntot

Ntot∑
α=1

f(xα)

p(xα)
, (3.13)

where p(xα) is a probability distribution from which xα is sampled.

3.3.2 Calculations of excluded volume

In Section 2.4, we showed that the excluded volume φex,i and activity coefficient γi in crowded
systems can be calculated through multidimensional integration (Eq. 2.36). To compute these
integrals, we use Eq. 3.13 with p(xα) being a Boltzmann distribution without crowders:

p
(
{rj}α

)
=

exp
[
−βUi

(
{rj}α

)]
Zi(0)

, (3.14)

where

Zi(0) =

∫
. . .

∫
exp [−βUi ({rj})]

ni∏
j=1

drj, (3.15)

is a configurational integral playing a role of the normalization factor. Inserting Eq. 3.14 into
Eq. 3.13 and using MC method to integrate Eq. 2.36, with

f({rj}α) = exp
[
−βUi

(
{rj}α

)]
exp

[
−β

ni∑
j=1

N∑
k=1

V (rαj −Rk)

]
, (3.16)
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Figure 3.2: Schematics of MC algorithm for computing excluded volume fraction φex,i.
Initial configuration of crowders is loaded from a BD simulation snapshot. Then, reagent is
inserted to the crowded box randomly, in a conformation drawn from Boltzmann distribution.
Every insertion resulting in overlap of reagent and at least one of the crowders leads to incre-
mentation (n + +) of the counter variable n. After large number of trials Ntot, ratio n/Ntot

gives an estimate of the fraction of volume excluded to the selected reagent.

we obtain:

1

γi
= 1− φex,i ≈

1

Zi (0)

1

Ntot

Ntot∑
α=1

exp
[
−βUi

(
{rj}α

)]
exp

[
−β∑ni

j=1

∑N
k=1 V (rαj −Rk)

]
exp

[
−βUi

(
{rj}α

)]
/Zi (0)

=
1

Ntot

Ntot∑
α=1

exp

[
−β

ni∑
j=1

N∑
k=1

V (rαj −Rk)

]
. (3.17)

For hard-sphere interactions between i-th particle and crowders (Eq. A.6), the exponential term
in Eq. 3.17 has only two possible values:

• 0, if hard-sphere potential is infinite, i.e., i-th particle overlaps with at least one of the
crowders,

• 1, if hard-sphere potential is zero, i.e., i-th particle does not overlap with any crowder.

We used the following algorithm to compute the excluded volume fraction φex,i (Fig. 3.2):

1. The positions of crowders are loaded from a BD trajectory of crowded box simulation.

2. A reagent is inserted into the system at a random position (and, for nonspherical particles,
with random orientation), and in conformation drawn from the Boltzmann distribution
(Eq. 3.14).

3. If the reagent overlaps with any of the crowders in the box, the counter variable n is
incremented.
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4. The reagent is removed from the system.

5. After Ntot repetitions of steps 2-4, the excluded volume fraction is approximated by
n/Ntot.

For that purpose, I developed ExVol software (Appendix D.4). Reagent’s conformations from
BD simulation are Boltzmann-distributed, so sampling from the BD trajectory fulfills Eq. 3.14.
The configurations of crowders can be sampled from BD simulation of the crowders as well.

The algorithm presented above is, in fact, the Widom insertion method applied to hard
particles [93]. Qin & Zhou [94] used this method to study the effects of crowding on protein
stability against denaturation and protein association equilibria. In a separate paper, the authors
reported a good agreement between the results of explicit MD simulations of protein in crowded
box and the MC insertion-based method [95].

The algorithm for calculating excluded volume fraction can be generalized to account for
interactions V between the inserted particle and the crowders other than hard-core. To compute
what we call the effective excluded volume fraction for non-hard-sphere systems, we use the
modified algorithm:

1. The positions of crowders are loaded from a BD trajectory of crowded box simulation.

2. A reagent is inserted into the system at a random position (and, for nonspherical particles,
with random orientation), and in conformation drawn from the Boltzmann distribution
(Eq. 3.14).

3. The interaction energy V between the reagent and the crowders is computed.

4. Counter variable x is incremented by 1− exp(−βV ).

5. The reagent is removed from the system.

6. AfterNtot repetitions of steps 2-5, the effective excluded volume fraction is approximated
by x/Ntot.

Note that effective occupied volume fraction may be defined as an effective volume excluded to
a point particle.
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Chapter 4

Diffusion in crowded media

These motions were such as to satisfy me . . . that they arose neither from currents

in the fluid, nor from its gradual evaporation, but belonged to the particle itself.

Robert Brown

In contrast to a physicist or chemist, a biologist usually thinks, talks about, or even sees the
macromolecules composing biological cells not so much in terms of their physical properties,
but rather their biological function, i.e., the reasons for their occurrence in systems subject to
natural selection. However, molecules, big or small, can perform their function only when they
approach or are delivered to a specific location in a cell or encounter their specific counterparts.
Thus, the mobility of macromolecules, although somewhat hidden deeper in the biological ma-
chinery, in fact, underlies the functioning of biological systems.

In living cells, two modes of motion exist: diffusion (thermal transport) and motor transport.
Although the latter is much more effective, it is dependent on chemical energy, whereas the for-
mer is not, so the two coexist. Furthermore, prokaryotic cells lack the permanent cytoskeleton
structure over which the motor proteins can transport cargo, hence they rely solely on diffusion
[96]. For specific examples of reaction-diffusion systems driving biological cells, the reader is
referred to a review by Soh et al. [97].

As noted by Netz & Eaton [33], in the near future first-principle simulations of biological
cells, even as small and simple as Mycoplasma genitalium, will remain computationally pro-
hibitive, hence the reaction-diffusion models for a long time will stay dominant in the field of
cellular modeling. Thus, understanding intracellular diffusion is of utmost importance to the
reliability of such modeling.

In this Chapter, we discuss research concerning macromolecular diffusion in crowded en-
vironments mimicking intracellular milieu. In Section 4.1, we overview an immense body of
experiments, theories, and simulations concerning diffusion in crowded environments, in vivo

as well as in vitro, focusing on both what is considered certain and, probably more interest-
ingly, where there are still gaps in our understanding and what is uncertain due to contradictory
results. Finally, in Sections 4.2–4.5, I present the results of our scientific inquiries into the in-
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fluence of hydrodynamic and attractive interactions, shape, and softness of macromolecules on
the diffusion in crowded environments.

4.1 Literature review

Macromolecular crowding (Section 2.3) is expected to visibly affect the diffusion of macro-
molecules in the cytoplasm, as well as nucleoplasm, membranes, and extracellular matrix. Here,
I review the experiments and simulations pointing out the deviations from the normal, dilute-
regime diffusion, which we discussed in section Section 2.1. Additionally, I describe theoretical
models aimed at explaining these deviations.

For the rest of this Thesis, I will commonly use the distinction between a tracer, i.e., the
molecule the motion of which is under study, and crowders, i.e., all the background molecules
affecting the motion of the tracer. The distinction origins from experiments, e.g., fluorescence
recovery after photobleaching (FRAP), where tracers are fluorescently tagged, hence only they
are visible to the experimentalist, the other macromolecules – crowders – merely creating a dark
background which affects tracer motion. In simulations, the division into tracer and crowders is
arbitrary.

4.1.1 Measurements in vivo

Studies of the macromolecular diffusion in the cytoplasm started over 40 years ago [98], and
since then, the research field has grown hugely. The majority of early results were obtained
with the FRAP method [99, 100]. The pioneering studies focused on diffusion in the eukaryotic
cytoplasm due to the larger size of eukaryotic cells compared to prokaryotic ones, which makes
them easier to investigate experimentally.

In 1981, Wojcieszyn et al. [98] measured translational diffusion of fluorescently labeled
immunoglobulin G (IgG) and bovine serum albumin (BSA) in human fibroblast cytoplasm and
reported approximately 70 times lower diffusion coefficients than in dilution. The following
studies in various eukaryotic cells reported more minor diffusion slowdowns, ranging from 2-
to 6-fold [101–106], apart from very large tracers [102, 103].

The differences between these results are probably not exclusively the features of various
organisms but, at least in part, hallmarks of some interactions between fluorescent tracers and
the cytoskeleton. For instance, tracers used by Wojcieszyn et al. [98] apparently interacted
with the fibroblast microtubule network, as the 70-fold slowdown was reduced upon adding
colchicine, the microtubule polymerization inhibiting agent.

Subsequently, technically more demanding FRAP measurements of the macromolecular
diffusion in prokaryotic cytoplasm started to appear. In 1999, Elowitz et al. [107] reported an
approximately 11 times slower diffusion of green fluorescent protein (GFP) in Escherichia coli

than in dilution and the following studies reported similar slowdowns [108–110]. Schavemaker
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et al. [96] in their review paper collected an extensive set of experimental results of diffusion
coefficient measurements in bacteria cells. It seems that, ignoring the pioneering results by
Wojcieszyn et al. [98], the diffusion in prokaryotic cells is visibly slower than in eukaryotes,
mainly due to the smaller macromolecular content in eukaryotes (Section 2.3) [62, 111].

The rise of single-molecule methods, mainly single-molecule tracking (SMT) [112] and
fluorescence correlation spectroscopy (FCS) (Appendix E), delivered new experimental data
regarding diffusion coefficients in vivo [113–115]. What is particularly exciting, the data differs
from the one obtained in earlier studies, predominately using FRAP method. A recent paper by
Bellotto et al. [115] reports translational diffusion coefficients of multiple proteins of various
sizes in E. coli using both FCS and FRAP. The FRAP measurements resulted in similar, albeit
systematically smaller (5 to 30%) diffusion coefficients, but did not lead to qualitatively different
conclusions. For small proteins, like GFP, the authors measured with FCS a 6-fold diffusion
slowdown, which is visibly smaller than the values reported in the aforementioned prokaryotic
FRAP studies [107, 116–118].

Apart from the bare values of diffusion coefficients, there are also some specific features of
diffusion in cells’ cytoplasm, which are worth noting here. In dilution, the dependence of dif-
fusion coefficient D on size a of the diffusing particle is determined by the Stokes-Sutherland-
Einstein (SSE) relation (D ∝ 1/a, see Eq. 2.10). Some authors reported a faster decay of D
with size in vivo [102, 103, 105, 109, 110, 119], which is sometimes referred to as sieving
effect. However, there are also reports to the contrary, in which D(a) follows the SSE relation,
apart from very large tracers [104, 108, 114, 115].

Moreover, as the cytoplasm is a complex fluid, there are reports suggesting the appearance
of anomalous diffusion therein (Section 2.2) [50, 57, 113, 114, 120, 121]. For instance, Gold-
ing & Cox [50] showed that diffusion of mRNA in E. coli is anomalous even on a timescale
of minutes, with anomalous exponent α ≈ 0.7, close to the asymptotic value in dense poly-
mer solutions [122]. Interestingly, Bellotto et al. [115] used anomalous diffusion model to fit
FCS data and received α = 0.8-0.86 suggesting the anomalous diffusion. However, after cor-
rectly accounting for finite volume effects, anomalous diffusion disappeared. This shows how
small hidden assumptions in theoretical models used to analyze experimental data may lead to
artifacts interpreted as real physical phenomena.

Leaving aside detailed physical mechanisms of the macromolecular diffusion inside the
cytoplasm, the reported experimental values allow placing the macromolecules’ diffusivities in
the frame of cellular length scales. In order to do that, let us compare estimates of how much it
would take GFP to traverse a distance equal to the respective cell size, based on Eq. 2.18. We
assume that the intracellular diffusion coefficient of GFP is 14.8 nm2 µs−1, following Bellotto
et al. [115]. Three cells are worth mentioning here: the smallest prokaryote M. genitalium

of diameter ≈ 400 nm, the model prokaryote E. coli of length ≈ 2 µm, and the eukaryotic
fibroblast cell of diameter≈ 14 µm. It would take GFP≈ 1.8 ms, 45 ms, and 2.2 s, respectively,
to diffuse a distance equal to these cell sizes (Fig. 4.1).
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Figure 4.1: Diffusion timescale vs. cell size Average time τL needed by GFP to traverse the
distance L equal to cell size, calculated with Eq. 2.18 and plotted in the form of a log-log
plot. The value of GFP diffusion coefficient is taken from ref. [115]. Markers denote (in that
order) M. genitalium, E. coli, fibroblast, and sauropod head-to-tail nerve cell, reportedly the
most extended cell ever existing [123].

Probably the longest cells that ever existed were nerves connecting the tail and brain of
the largest sauropod (clade of dinosaurs), achieving even 50 m [123]. The diffusion timescale
for them is close to 1 million years (more precisely, 890000 years). This example is slightly
extreme, but demonstrates that due to a quick, quadratic increase in the diffusion timescales,
larger cells cannot depend solely on the diffusive transport. Precisely for that reason, eukaryotic
cells use motor proteins which actively transport cargo along the cytoskeleton architecture. On
the other hand, for the same reason the size of prokaryotic cells, which do not have a permanent
cytoskeleton, is limited by the diffusion timescale [124].

Ross [19] coined a term “dark matter of biology” for a broad range of intracellular effects,
including diffusion slowdown. The simile is based on the fact that in cell biophysics, likewise
in astrophysics, there are deviations from fundamental theories, like, for instance, the theory of
Brownian motion (Section 2.1), but it is practically impossible to isolate what their sources are,
as a plethora of various effects not directly visible in experiments are all at once at play.

At least six different mechanisms may, to a different extent, account for the observed diffu-
sion slowdown [10, 116, 125]:

1. Increased water viscosity (Section 4.1.2),

2. Excluded volume interactions (Section 4.1.3),

3. Hydrodynamic interactions (Section 4.1.4),

4. Electrostatic interactions (Section 4.1.5),

5. Nonelectrostatic attractive interactions (Section 4.1.6),

6. Confinement within polymer network (Section 4.1.7).
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Experimentally, it is challenging to study each of them separately. However, it is possible to
single out the mechanisms 1-3 by studying concentrated solutions of sufficiently inert polymeric
crowders of high ionic strengths, assuming that the water viscosity there changes similarly as
inside the cell. This approach became state-of-the-art when accounting for the effects of macro-
molecular crowding in vitro [125–127]. Then, lowering the ionic strength or adding noninert
crowders, e.g., proteins, may additionally introduce mechanisms 4 and 5 [128–130]. Simu-
lations [35–38, 131, 132] and theoretical considerations are, in that respect, more flexible, as
they enable isolation of each of these 6 mechanisms. Gauging the importance of each of these
mechanisms is one of the major goals of the intracellular diffusion research field.

4.1.2 Increased water viscosity

The effect of increased fluid phase viscosity is straightforward from the theoretical standpoint,
as it reduces to merely rescaling the value of viscosity η in the SSE relation (Eq. 2.10). How-
ever, the majority of measurements of diffusion of small molecules in vivo and in vitro show
that their diffusion is weakly affected, which would suggest that the fluid viscosity increase is
minor [125, 133, 134]. Furthermore, in a scenario in which the viscosity has a deciding role, the
rotational diffusion of spherical molecules should be slowed down similarly to translational dif-
fusion, which is not the case as shown by Swaminathan et al. [105] (only ≈ 1.5-fold decrease).
Therefore, the change in the fluid viscosity is usually ignored.

4.1.3 Excluded volume interactions

4.1.3.1 Simulations: lattice models

Excluded volume effects were studied in isolation by Saxton [56, 135–140] in his important se-
ries of papers concerning random walk on the two-dimensional triangular lattice with obstacles,
and later by Ellery et al. [141] on the two-dimensional and three-dimensional square lattice us-
ing nonstochastic method introduced by Mercier & Slater [142, 143]. Their main observation
is that the total occupied volume fraction φocc (Section 2.3.1) is insufficient to predict tracer’s
diffusion coefficient. The diffusion coefficient depends in a complicated way on other features:
tracer’s size and crowders’ sizes, shapes, and mobilities [135–137, 140, 141].

For sphere-like (on the lattice) crowders and tracers, the diffusion coefficient decreases with
the tracer size and increases with the crowder size, assuming a fixed occupied volume fraction
φocc [135, 140, 141]. There are two interesting exceptions to the former. (1) When crowders
are allowed to move, the tracer-size dependence is weak, and overall, mobile crowders hinder
the diffusion less effectively than immobile ones [136, 137]. (2) There is no tracer size depen-
dence when crowders aggregate to form fractal-like structures [140]. These effects might be the
reasons for ambiguous experimental results, some of which report tracer size-dependence [102,
103, 105, 109, 110, 119], while the others do not, apart from very large tracers [104, 108, 114,
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Figure 4.2: Diffusion in crowded environments. (a) Mean squared displacement (MSD) of
a tracer in a crowded fluid. At short times, MSD changes nonlinearly (Eq. 2.19), following a
subdiffusive power law (α < 1). At long times, the linear normal regime is brought back. (b)
Time-dependent diffusion coefficient D(t) = MSD(t)/6t. Due to collisions with crowders, the
diffusion coefficient gradually decreases and tends to the limit value for t → ∞. We refer to
limt→0D(t) as short-time diffusion coefficient Ds, and to limt→∞D(t) as long-time diffusion
coefficient Dl. We neglect the initial balistic motion.

115].
Furthermore, the dependence on crowder shape is complex. For the same volume fraction,

short rod-like and L-shaped crowders hinder the diffusion of sphere-like tracers more effectively
than small spheres, but for longer, rod-like crowders, the difference disappears [141].

Moreover, Saxton [56] showed that in highly occupied lattices, the overall diffusive dynam-
ics is not normal, but in contrast to anomalous diffusion (Section 2.2), it cannot be expressed
by a general power law (Eq. 2.19) either. The observed motion of the tracer is subdiffusive at
short times, with short-time diffusion coefficient Ds = limt→0D(t), but then returns to linear
normal regime with long-time diffusion coefficient Dl = limt→∞D(t), as shown schematically
in Fig. 4.2.

The studies by Saxton [56] and Ellery et al. [141] are limited by the fact that the authors
considered the diffusion on a lattice. Nevertheless, their results successfully accounted for the
excluded volume effects and brought attention to the effects beyond the total occupied volume,
such as sizes and shapes of the crowders.

4.1.3.2 Theory: off-lattice models

Hanna et al. [144] solved the N -particle Smoluchowski equation for a system of hard spheres
performing Brownian motion. The obtained long-time self-diffusion coefficient Dl up to the
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first order in φocc reads:

Dl

D0

= 1− 2φocc. (4.1)

The slope of diffusion coefficient decrease agrees well with the on-lattice results by Saxton
[136] observed for φocc ≤ 15%.

Muramatsu & Minton [145] introduced an approximate theory of excluded volume effect
on the diffusion coefficient slowdown, which is based on the scaled particle theory (SPT) (Sec-
tion 2.4.2). It relates the diffusion coefficient with the Gibbs displacement activation energy
∆Gt:

D0 = A exp

[
−∆Gt

kBT

]
, (4.2)

where A is the diffusion coefficient in the limit of infinite temperature T . In crowded envi-
ronments, the Gibbs energy change is modified by a factor which can be estimated with SPT
(Section 2.4.2). The relative diffusion coefficient reads:

ln
D

D0

= −∆∆Gt

kBT
. (4.3)

where ∆∆Gt is the Gibbs energy needed to make a cavity in the crowded fluid that allows for
a movement of the particle.

In principle, it is nontrivial to calculate ∆∆Gt for a cavity needed for a small translation of
a sphere. However, it may be roughly approximated with the difference between the insertion
Gibbs energies for spherical molecules of radius a and a+da, and computed from the SPT [12]:

∆∆Gt = ∆G (a+ da)−∆G (a) . (4.4)

Han & Herzfeld [146] improved that approach by approximationg ∆∆Gt more closely, with a
dfference between the insertion free energies of a spherocylinder and a sphere. For small φocc,
this approach leads to Eq. 4.1 if the spherocylinder length is set to 2a/3.

In contrast to the result by Hanna et al. [144] (Eq. 4.1), the approaches by Muramatsu &
Minton [145] and Han & Herzfeld [146] allow for pinpointing the dependence of diffusion coef-
ficient on various features of the tracer and crowders. For instance, it predicts a more substantial
diffusion coefficient decrease for larger tracers at a fixed occupied volume. Moreover, the pre-
dicted crowder-size dependence is opposite, namely the larger crowders hinder the diffusion of
tracers less strongly at fixed φocc.
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4.1.4 Hydrodynamic interactions

4.1.4.1 Theory

The next level of description includes hydrodynamic interactions – indirect interactions arising
because a particle moving through a fluid induces a fluid velocity field, which affects the motion
of other particles (Section 3.2) [10]. Cichocki & Felderhof [147] derived expressions for short-
time and long-time diffusion coefficients for a suspension of spherical Brownian particles to a
first-order in φocc. The resulting expressions read [147]:

Ds

D0

= 1− 1.8315φocc, (4.5)

for short-time diffusion coefficient, and:

Dl

D0

= 1− 2.0972φocc, (4.6)

for long-time diffusion coefficient. The long-time diffusion coefficient decreases slightly more
quickly than predicted in absence of hydrodynamic interactions by Hanna et al. [144] (Eq. 4.1).

Different approach was undertaken by Tokuyama & Oppenheim [148], who, starting from
the fluctuating Navier-Stokes equation, derived formulas for short-time Ds and long-time Dl

diffusion coefficients in suspensions of identical hard spheres in an incompressible fluid. The
short-time diffusion coefficient is:

Ds

D0

=
1

1 +H(φocc)
, (4.7a)

where:

H(φocc) =
2b2

1− b −
c

1 + 2c
− bc(2 + c)

(1 + c)(1− b+ c)
, (4.7b)

b(φocc) =

√
9

8
φocc, (4.7c)

c(φocc) =
11

16
φocc. (4.7d)

For the long-time diffusion coefficient, Tokuyama & Oppenheim [148] obtained:

Dl

D0

=
1− 9

32
φocc

1 +H(φocc) + φ̃
(1−φ)2

, (4.8a)
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Figure 4.3: Comparison of theoretical expressions for (a) short-time and (b) long-time
diffusion coefficient in crowded environment. (a) Expression due to Cichocki & Felderhof
(Eq. 4.5) in red; expression due to Tokuyama & Oppenheim (Eq. 4.7a) in blue. (b) Expression
due to Cichocki & Felderhof (Eq. 4.6) in red; expression due to (Eq. 4.8a) in blue.

where:

φ̃ =
φocc

φ0

, (4.8b)

φ0 =

(
4

3

)3
1

7 ln 3− 8 ln 2 + 2
≈ 0.5718. (4.8c)

We note that Eq. 4.8a predicts a lower Dl than Eq. 4.6 derived by Cichocki & Felderhof [147]
(Fig. 4.3).

4.1.4.2 Simulations

Ando & Skolnick [36] showed using Stokesian dynamics (SD) simulations accounting for both
far-field and near-field hydrodynamic interactions (Section 3.2.2) that including excluded vol-
ume effects and hydrodynamic interactions only is enough to reproduce the GFP diffusion co-
efficient in E. coli without any fitting parameters. It may, however, be argued that it holds only
in one of three systems of various φocc they analyze, 300 mg mL−1, whereas the experimental
estimates for φocc in E. coli are closer to 340 mg mL−1 [9]. Furthermore, the authors compared
their results to the GFP diffusion coefficient in E. coli obtained by Elowitz et al. [107] using
FRAP, which may be underestimated according to Bellotto et al. [115].
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4.1.4.3 Experiments: artificial inert crowders

In principle, in solutions of inert, compact polymers, hydrodynamic interactions, fluid viscosity,
and excluded volume are the only diffusion slowdown mechanisms at play. Of course, in prac-
tice, it is not trivial to determine how much the real polymer crowders, such as Ficoll, Dextran,
poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), etc., fulfill these criteria, and if yes,
up to what concentrations [149]. Nevertheless, these discrepancies are beyond the scope of this
Thesis.

The majority of diffusion measurements performed in artificially crowded solutions agree
that there is a tracer-size dependence in crowded systems [126, 150–154], although some au-
thors do not observe this effect [155, 156]. Based on extensive experimental studies [152, 153]
and previous phenomenological equations [155, 157], Kalwarczyk et al. [133] proposed a single
formula, called lengthscale-dependent viscosity model (LDVM), to capture the general depen-
dence of viscosity (and by simple inversion – the diffusion coefficient, see Eq. 2.10) on the
tracer size, which applies to crowded micellar and polymer solutions:

η

η0

= exp

[(
Reff

ξ

)B]
; (4.9a)

Dl

D0

= exp

[
−
(
Reff

ξ

)B]
, (4.9b)

where B is a constant close to 1, ξ is a correlation length of the polymer network depending on
its concentration and gyration radius, and the effective hydrodynamic radius Reff is given by:

R−2
eff = a−2 +R−2

h , (4.10)

where a and Rh are hydrodynamic radii of a tracer and polymeric or micellar crowder, respec-
tively.

Eq. 4.9 predicts that the smallest tracers experience viscosity close to the water viscosity, as
we discussed in Section 4.1.2, whereas large tracers experience macroscopic viscosity. Further-
more, Junker et al. [126] showed that polymer crowding agents exhibit positive deviation from
the SSE relation, i.e.:

Dl(φocc) >
kBT

6πηa
, (4.11)

which means that the viscosity felt by tracer particles is smaller than the macroscopic viscosity
(compare to Eq. 2.10) and agrees with the LDVM [133].

Banks & Fradin [122] observed anomalous diffusion of streptavidin in crowded solutions
of Dextran persisting for a few seconds. The measured anomalous exponent α depended on
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the crowder size and concentration. Interestingly, its behavior was asymptotic, and approached
0.74 with increasing crowder concentration, irrespective of the crowder size.

4.1.5 Electrostatic interactions

The role of electrostatic interactions in the diffusion slowdown is still unclear. The Debye length
in cells is less than 1 nm [158], which leads to a rapid decay of electrostatic interactions with the
distance. However, some of the biomacromolecules bear huge electric charges, e.g., ribosomes
≈ −4024e [36]. Schavemaker et al. [159] showed with FRAP that in E. coli a positively-
charged GFP diffuses two orders of magnitude slower than its negatively-charged analog. The
difference is probably due to the electrostatic attraction by ribosomes.

McGuffee & Elcock [37] compared the results of Brownian dynamics (BD) simulations of a
coarse-grained E. coli cytoplasm model with and without electrostatic interactions. Apart from
electrostatics, only excluded volume interactions were accounted for. The authors reported
≈ 1.3 times slower diffusion of GFP in a model with electrostatics at play.

4.1.6 Nonelectrostatic attractive interactions

4.1.6.1 Simulations

The next level of description involves attractive interactions between the macromolecules. In
a random walk study on 2D lattices, Saxton [55] showed that attractive interactions between
the crowders and tracer lead to a significant decrease in diffusion coefficient compared to the
excluded-volume-only reference system. The magnitude of the decrease depends on the details
of the interactions and their strength.

We discuss here only so-called valley models, i.e., models in which the lattice points have
attributed various binding energies. The probability of escape from a given binding site was
computed by Saxton [55] using the Metropolis algorithm. When random walk simulations
were started from positions drawn from a uniform probability distribution, the diffusion was
strongly anomalous over a long timescale. However, if the starting positions were Boltzmann-
distributed, the magnitude and timescale of anomalous subdiffusion were comparable to those
observed in excluded-volume-only systems, however, with a smaller Ds value. In systems with
binding sites but without crowding, in the case of equilibrated initial configuration, there was
no anomalous diffusion.

Nawrocki et al. [160] argued, based on the results of all-atom molecular dynamics (MD)
simulations of proteins, that the translational and rotational diffusion slowdown could be ex-
plained solely by excluded volume and transient complex formation due to attractive interac-
tions. It is contrary to the stance held by Ando & Skolnick [36], who claim that the excluded
volume and hydrodynamic interactions could explain the translational diffusion slowdown with-
out invoking any attractive interactions. As described by Ando & Skolnick [36], precise mea-
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surements of tracer-size-dependence of diffusion slowdown may, in principle, tip the balance
between these two hypotheses.

4.1.6.2 Experiments: noninert crowders

As the systems with viscosity, hydrodynamic, and excluded volume interactions only are real-
ized by artificial crowder solutions with high ionic strength, the systems which, on top of these
interactions, have also electrostatic and nonelectrostatic attractive interactions are realized by
crowded protein solutions. The diffusion slowdown observed in crowded protein systems is
more substantial than observed in polymer crowder systems of comparable occupied volume
φocc [129, 130]. Proteins differ from inert crowders because they are nonuniformly charged and
can be engaged in a myriad of nonspecific interactions varying in strength [128].

Furthermore, in contrast to polymeric crowders, protein crowders lead to a negative devia-
tion from the SSE relation [129, 161], i.e.:

Dl(φocc) <
kBT

6πηa
, (4.12)

This means that diffusion slowdown in protein solutions is larger than what is expected based
on the macroscopic viscosity (compare to Eq. 2.10).

Etoc et al. [114] analyzed how the intracellular diffusion of a nanoparticle with a fixed size
changes upon varying its surface coating. With inert coating, the diffusion coefficient was only
2-4 times smaller than in water, whereas, with less inert, even 10-15 times. For the noninert
tracers, the authors also observed a long-time subdiffusion (Section 2.2).

Interestingly, the LDVM (Eq. 4.9) allowed Kalwarczyk et al. [162] to obtain diffusion coef-
ficients of the whole E. coli proteome based on the literature values for ca. 20 macromolecules
in its cytoplasm [62, 162]. The physical meaning of ξ and Rh (Eq. 4.9) in cells is not clear,
although in HeLa and Swiss 3T3, ξ ≈ 5-7 nm and coincides with the hydrodynamic radius of
the actin filaments and water pores [62, 103, 133]. However, all papers we are aware of advocat-
ing for LDVM [133, 134, 152, 153, 162–167] reduce the mobility of macromolecules merely
to its size dependence, which, as discussed above, may not apply to systems with attractive
interactions [114, 129], in which the microscopic viscosity exceeds the macrocopic one.

4.1.7 Confinement within polymer network

In addition to the mobile biomacromolecules crowding the cytoplasm, the cell interior also
contains biopolymeric networks, such as cytoskeleton [168] and nucleoid [169], which affect
its physicochemical properties. In some sense, such cytoplasm is similar to a concentrated
polymer solutions such as hydrogels, in which thin channels bridge separate cages of various
sizes.

Such a porous environment is known to affect the diffusion of particles therein in a complex
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way. First and foremost, the effect depends strongly on the size of a tracer relative to the mesh
size ξ of the polymeric network, which is determined by its total concentration and degree
of cross-linking. When tracers are significantly smaller than the mesh size, their diffusion is
only slightly affected by it, whereas when tracers are significantly larger, they become trapped
and virtually immobile [170, 171]. In the intermediate regime, when 2a ≈ ξ, the diffusion
of tracers is transiently anomalous. It is because the molecules diffuse inside individual cages
of the network and relatively rarely hop between them. In the long-time regime, the normal
diffusion is recovered, and its rate is determined by the frequency of such hops.

Moreover, tracer diffusion in a polymeric network becomes coupled with the dynamics of
the network. It was observed that even the particles a few times larger than the mesh size are
not entirely trapped and are able to diffuse, albeit slowly [171]. As shown by BD simulations,
it is due to cooperative mesh fluctuations, which can dynamically change the local mesh size
and facilitate the release of a tracer from the cage [172, 173]. Interestingly, the effect is the
opposite for smaller tracers, which diffuse faster in nonfluctuating networks, owing to their
smaller effective size [172].

Finally, as with mobile crowders, the immobile ones may also interact with tracers through
interactions other than the excluded volume [174, 175].

4.1.8 Concluding remarks

Ellis [8] suggested editors to reject papers reporting in vitro experiments that have not con-
trolled macromolecular crowding, as they may be of little or no relevance to in vivo conditions.
However, the emerging picture seems to be very complex, as macromolecular crowding is not
characterized by a single, easy to control value, e.g., occupied volume fraction φocc. Due to
conflicting results, there is currently no consensus on whether hydrodynamic or attractive in-
teractions or their combination account for the diffusion slowdown observed in vitro, and the
influence of the crowder shape has not been completely understood. We address these problems
in the following sections of this chapter.

4.2 Effect of hydrodynamic interactions

The works by Ando & Skolnick [36] and Roosen-Runge et al. [130] have attracted much at-
tention to the role of hydrodynamic interactions (Section 4.1.4) in the slowdown of diffusion
in vivo. Although it is widely accepted that accounting for far-field hydrodynamic interac-
tions only is not sufficient to correctly describe the diffusion in crowded environments [10, 77],
surprisingly, to our knowledge, there is no work comparing directly the effect of far-field and
near-field hydrodynamics for simple systems of various occupied volume fractions φocc.

Blanco et al. [176] compared BD simulations (1) without hydrodynamic interactions, (2) with
hydrodynamic interactions in the Rotne-Prager-Yamakawa (RPY) approximation (although with-
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Table 4.1: Compositions of systems studied with BD and SD simulations to assess the role
of hydrodynamic interactions in diffusion slowdown. φocc is the occupied volume fraction
and NF is a number of particles in the simulation box.

φocc NF

5.5% 42
11.1% 84
22.1% 168

out accounting for their long-range character via Ewald summation), and (3) with a mean-field
method based on the Tokuyama & Oppenheim [148] formula for rescaling the short-time dif-
fusion coefficients (Eq. 4.7a). However, their trajectories (1 µs) are likely too short to reach the
long-time diffusion, and the timestep (100 ps) was probably too large in this context.

The purpose of our study was to compare three different approaches to hydrodynamic inter-
actions for a simple system of identical, spherical crowders:

1. No hydrodynamic interactions (free draining).

2. Far-field hydrodynamic interactions with the Ewald-summated generalized RPY approx-
imation (Section 3.2.1).

3. Far-field and near-field hydrodynamic interactions with F-formulation of SD (Section 3.2.2).

We used the hydrodynamic radius a = 5.1 nm, mimicking Ficoll70, frequently used artificial
polymer crowder [126]. However, the results do not depend on the size of particles. We studied
systems of occupied volume fraction φocc = 5.5, 11.1, and 22.1% (Fig. 4.4a).

4.2.1 Simulation details

In our BD and SD simulations, we placed the model macromolecules in cubic boxes of 75 nm×
75 nm×75 nm and applied periodic boundary conditions in all three directions. Precise numbers
of particles in each studied system are presented in Table 4.1. The time step ∆t was 0.5 ps, and
simulations lasted for 20 µs (10 µs for φocc = 20%). BD was propagated with the Ermak-
McCammon scheme (Eq. A.3), and SD with the midpoint scheme with m = 100 (Eq. A.5).
The temperature T was 293.15 K, and dynamic viscosity η = 1.005 cP.

The particles interacted only via hard-sphere potential (Eq. A.6). We performed Ewald-
summation of the diffusion matrix with α =

√
π, mcutoff = ncutoff = 2 (Appendix B). We

followed Ando & Skolnick [36] and performed the Choleski decomposition every 100 steps (in-
stead of every step) for computational efficiency. In the SD, we used the generalized lubrication
correction approach (Eq. 3.11) with cutoff on near-field hydrodynamic interactions equal to 6a.
Since there was no open-source software, allowing for simulations using lubrication-corrected
RPY approximation, we developed and used our own pyBrown package (Appendix D.2).
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We computed time-averaged mean squared displacement (TAMSD) (Eq. A.14) with a win-
dow length equal to 5 ns for each system under study. The long-time diffusion coefficients Dl

were obtained by a linear fit to TAMSD with weights equal to
√
Nsteps − i− 1 to account for

the fact that the i-th element of TAMSD vector is a time average of Nsteps − i − 1 squared
displacements of a single particle. For fitting TAMSD with Eq. 2.9, we used only datapoints
for t > 10 µs (t > 2.5 µs for φocc ≈ 20%). Uncertainty of the Dl due to sampling error was
estimated by dividing the simulations into five subsets and computing the standard deviation of
the mean while treating the subsets as independent “measurements”.

Short-time diffusion coefficients Ds were obtained by computing the mean diagonal ele-
ments of the diffusion matrix at consecutive timesteps and averaging them:

Ds =
1

3N
〈Tr [D]〉 , (4.13)

where N is the number of particles and Tr [D] denotes a trace of diffusion matrixD, i.e., a sum
of its diagonal elements. Nesting expression inside the angle brackets (〈〉) represents averaging
over timesteps.

4.2.2 Short-time diffusion

Short-time diffusion coefficients obtained from SD simulations decrease with increasing occu-
pied volume fraction φocc (Fig. 4.4b). Linear fit toDs(φocc)/D0 leads to an equation 1−1.9φocc,
close to the theoretical result obtained by Cichocki & Felderhof [147] (Eq. 4.5). and the F-
version SD results by Phillips et al. [82]. The far-field hydrodynamic interactions do not affect
the short-time diffusion coefficients, because they change only the off-diagonal blocks of diffu-
sion matrixD (Section 3.2.1).

4.2.3 Long-time diffusion

The long-time diffusion is established after a few microseconds, faster for higher φocc. The
long-time diffusion coefficients computed with all three approaches decrease upon increasing
the occupied volume fraction φocc (Fig. 4.4c). Results accounting for a full range of hydro-
dynamic interactions are in perfect agreement with the Cichocki & Felderhof [147] formula
(Eq. 4.6). Results not accounting for hydrodynamic interactions overestimate the long-time dif-
fusion coefficients, conforming to a 1− 1.8φocc trend, which is close to the theoretical result by
Hanna et al. [144] (Eq. 4.1), albeit slightly higher. Diffusivities calculated accounting only for
far-field hydrodynamic interactions are significantly higher than those obtained without hydro-
dynamic interactions at all. The linear fit gives a slope of decay between 1.0 and 1.2, depending
on whether we include a point φocc = 0.0 into the fitting, which indicates that, at least for small
φocc, the relation is nonlinear.
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Figure 4.4: Diffusion coefficient of Ficoll70 obtained with BD and SD on various levels
of description of hydrodynamic interactions. (a) Snapshots of simulated systems of hard
spheres with increasing φocc. (b) Relative short-time diffusion coefficient Ds/D0 of Ficoll70
from simulations with far-field and near-field hydrodynamic interactions (ff+nf hi, blue) as a
function of φocc. Results are compared with the theoretical expression by Cichocki & Felderhof
(Eq. 4.5, blue line) [147] and simulation results by Phillips et al. [82] (gray symbols). Note
that Ds = D0 when we do not account for near-field hydrodynamic interactions. (c) Relative
long-time diffusion coefficientDl/D0 of Ficoll70 as a function of φocc from simulations without
hydrodynamic interaction (w/o hi, black), with far-field hydrodynamic interactions (ff hi, red)
and with far-field and near-field hydrodynamic interactions. Results are compared with the
theoretical expressions by Hanna et al. [144] (Eq. 4.1, black line) and Cichocki & Felderhof
[147] (Eq. 4.6, blue line). D0 is computed from the SSE relation.

4.2.4 Discussion

The major difference between the BD simulations with far-field RPY hydrodynamic interac-
tions and SD simulations with far-field and near-field hydrodynamic interactions is the decrease
in short-time diffusion coefficient in the latter. For occupied volume fraction φocc = 22.1 %, ly-
ing in the lower end of the physiological range, the decrease in short-time diffusion coefficient
is 42%. For the same φocc, the long-time diffusion coefficient obtained with BD without hy-
drodynamic interactions overestimates the one obtained with full hydrodynamics only by 13%,
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while the RPY approximation overestimates it by 48%.
The interparticle correlations induced by the Ewald-summated RPY diffusion matrix lead

to a visible underestimation of the decrease in the diffusion coefficient for the whole range of
the studied occupied volume fractions, approximately by a factor of 2. Similarly, Dl/Ds in SD
is much higher than Dl/D0 without hydrodynamic interactions. It is because correlations make
collisions less probable. The overall effect of the far-field hydrodynamic interactions is then an
increase, not decrease, of Dl.

In quantum chemistry, there is a notion of a “Pauling point”, brilliantly described in a quote
by Vålådalen: “a characteristic feature of quantum chemistry was that even a fairly simple
theory could sometimes give excellent agreement with experimental experience, but that this
agreement may disappear whenever one tries to improve the theory” [177]. This seems to be
the case in the description of diffusion in crowded environments as well. Long-time diffusion
coefficients in dense hard-sphere systems obtained without accounting for hydrodynamic in-
teractions are closer to the exact values than those which account for it only on the far-field
level.

In principle, it is straightforward, although computationally rather cumbersome, to system-
atically improve the results of F-version SD. One should include the angular degrees of freedom
with their coupling to the translational ones on the level of resistance and diffusion matrices, and
possibly incorporate more terms in multipole expansion of far-field hydrodynamic interactions.
However, it is unclear whether this computationally demanding procedure will systematically
improve the reproduction of experimental diffusion coefficients of biologically relevant macro-
molecules. The equations describe the behavior of hard spheres, and the proteins, ribosomes,
etc., rarely have either of these features. It would be interesting to verify how more realistic
models of macromolecules affect the behavior of explicit water molecules in MD simulations,
and by these means, possibly validate the RPY and SD approaches to hydrodynamic interac-
tions.

4.3 Effect of macromolecule’s shape

4.3.1 Experimental results

In our joint work [127], the experimental group of Jörg Fitter performed FCS measurements
(Appendix E) of the diffusion coefficient of fluorescently-tagged streptavidin in buffer solutions
containing mixtures of Ficoll70 and 16-nm-long double-stranded DNA (dsDNA) of various
molar and occupied volume fraction, xdsDNA and φocc, respectively (Fig. 4.5a). The results are
gathered in Tables E.1–E.4. In all experiments the concentration of streptavidin was orders of
magnitude lower than that of Ficoll70 and dsDNA. To our knowledge, dsDNA has never been
used as a crowder before.

In systems containing only one crowder (Ficoll70 or dsDNA), the diffusion coefficient of
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Figure 4.5: Diffusion of streptavidin in solutions crowded with Ficoll70 and/or dsDNA
measured with FCS. (a) We studied diffusion of fluorescently-labeled streptavidin in buffer
solutions containing Ficoll70 – chemically inert polymeric crowder and 16-nm-long dsDNA
of various occupied volume fractions φocc and dsDNA molar fractions xdsDNA. (b) Diffusion
coefficient of streptavidin in one-crowder systems – either Ficoll70 (red) or dsDNA (blue).
Vertical lines denote the φocc values for which mixtures of various xdsDNA are plotted in panel c.
(c) Diffusion coefficient of streptavidin in two-crowder systems of various xdsDNA and φocc = 5
(green), 10% (orange). Lines on the plot do not represent experimental data but serve only as a
guide to the eye. Figure adapted from ref. [127].

streptavidin relative to its value in dilution decreased with φocc in both cases (Fig. 4.5b). How-
ever, the slope of the decrease differs considerably between the two cases. Namely, the solutions
of the elongated dsDNA crowders hinder the diffusion of streptavidin much more than the so-
lutions of the spherical Ficoll70 crowders. The linear fit to the results for Ficoll70 crowders
yields 1− 1.81φocc. The slope is ≈ 14% smaller than what we obtained in our SD simulations
(Fig. 4.4). Note, however, that the streptavidin tracer is smaller than Ficoll70, so the slope might
be smaller than for Ficoll70-only system (Section 4.1.3).

The results obtained for mixtures reflect the trend observed in the one-component systems
(Fig. 4.5c). Increasing xdsDNA while keeping φocc fixed leads to a substantial decrease in the
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Figure 4.6: Models representing Ficoll70 and dsDNA used in BD simulations. Ficoll70
macromolecule is modeled using a sphere with hydrodynamic radius a = 5.1 nm. 16-
nanometer-long dsDNA macromolecule is modeled using an 8-bead-long chain, with all beads
of the same radius 1.14 nm.

streptavidin diffusion coefficient. Interestingly, the majority of the drop is observed already at
the lowest studied xdsDNA (25%). It seems that even small concentration of dsDNA affects the
mobility of streptavidin substantially, while further addition of dsDNA changes the diffusion
coefficient only slightly.

4.3.2 Ficoll70 and dsDNA models

To understand the origin of the observed effect, we performed BD simulations of systems simi-
lar to the experimental ones. However, for computational reasons, we have chosen not to include
streptavidin and focus on binary systems. In the experiments, the concentration of streptavidin
was a few orders of magnitude smaller than the concentration of Ficoll70 and dsDNA, as it is
needed for a good accuracy of FCS measurements. It means that we would have to perform a
huge number of simulations, in which we would place a single streptavidin tracer in a crowded
system, in order to gather satisfying statistics. We estimated that given the computational re-
sources attained for this project (Intel Xeon E5-2680 v3, 48 CPU/job, 480 CPU in total), it
would take approximately two years to obtain satisfactory results, which we found prohibitive.
The dsDNA and Ficoll70 models used in BD simulations are presented in Fig. 4.6.

4.3.2.1 Ficoll70 model

We modeled Ficoll70 macromolecule as an electrically neutral sphere with a hydrodynamic ra-
dius of 5.1 nm [126]. Ficoll70 interacted with other particles only through short-range repulsive,
integrated Weeks-Chandler-Andersen (WCA) interaction [178] (Eq. A.7). The diffusion coeffi-
cient of Ficoll70 in dilution at T = 293.15 K computed from the SSE relation is 41.89 nm2 µs−1,
which means that the model macromolecule, on average, needs approximately 0.1 µs to traverse
a distance equal to its radius.
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4.3.2.2 dsDNA model

We modeled the 16-nm-long dsDNA fragment used in the experiments with eight linearly con-
nected beads of radius 1.14 nm each. Thus, the dsDNA was slightly longer but the volume occu-
pied by eight beads was equal to the volume occupied by a cylinder with a diameter of 2 nm and
length of 16 nm, as previously assumed by experimentalists [126]. Here, every bead represented
six base pairs. We set the force constant for bonds (Eq. A.12) to kr = 9.866 kcal mol−1 nm−2,
which gives ≈ 10% of thermal fluctuations in the bond length, according to a simple estimate
kBT/kr. Force constant for angles (Eq. A.13) was kα = 12.086 kcal mol−1 rad−2, which gives
≈ 12.6◦ of thermal fluctuations in the bond angle (kBT/kα). As with Ficoll70, a dsDNA inter-
acted with other particles through the integrated repulsive WCA potential (Eq. A.7); in addition
every bead had an electric charge of−2.4e and interacted through the screened electrostatic po-
tential due to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (Eq. A.11). In reality, every
base pair has a charge of −2e and amounts to approximately 0.33 nm of length, so the charge
should be even higher (−12e per bead). However, we followed ref. [36] and renormalizad the
charges by a factor of 0.2, as suggested by Levin [179].

The hydrodynamic radius (Fig. 4.7a) and diffusion coefficient of the dsDNA model were
calculated from 500 independent BD simulations of single dsDNA particle in a box. We fitted
the TAMSD (Eq. A.14) of its center of geometry with a linear function 6D0t. It is worth noting
that on short timescales, the outmost beads diffuse the fastest due to the coupling of geometric
center translation and end-to-end vector rotation (Fig. 4.7b) [180].

We divided the trajectories into five subsets and estimated the uncertainty of the obtained
result by computing standard deviation of the mean (Fig. 4.7c). We obtained the diffusion coef-
ficient (at T = 293.15 K ) D = 57.8 ± 1.4 nm2 µs−1, which, using the SSE relation, translates
to a hydrodynamic radius a = 3.70± 0.09 nm. This value is in a reasonable agreement with the
experimental result (a = 3.90±0.14 nm) obtained with FCS, and with the value obtained using
PyGRPY software for computing diffusion coefficients of rigid bead structures (3.5 nm) [181,
182] (Appendix D.5). The difference between BD and PyGRPY results is probably due to the
fact that the rigid linear geometry does not represent the hydrodynamic properties of a dynamic
structure, which can bend and elongate.

We used the same simulations to compute the rotational diffusion coefficient Dr by fitting
an exponentially decaying function of time to OA of the end-to-end vector (Eqs. A.18 and A.19
and Fig. 4.7d). We obtained Dr = 1.225± 0.006 rad2 µs−1.

To quantify the relation between rotational and translational movement, we introduce a pa-
rameter:

k =

√
2Dr

3Dt

. (4.14)

It describes how much the chain rotates after traversing a particular distance. In the case of our
dsDNA model, k ≈ 6.8 ◦ nm−1, which means that a dsDNA rotates, on average, by 25◦ moving
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Figure 4.7: Properties of dsDNA model used in BD simulations. (a) Model of dsDNA used
in BD simulations compared to the sphere of the same hydrodynamic radius a = 3.7 nm. (b)
TAMSD of separate dsDNA beads and of its center of geometry (CoG). (c) TAMSD of the
total sample (500 trajectories) and of 5 subsamples of 100 trajectories each, visualizing the
uncertainty of the dsDNA diffusion coefficient. (d) Orientation autocorrelation (OA) of the
end-to-end vector of the dsDNA model.

a distance equal to its hydrodynamic radius and by 124.5◦ moving a distance equal to its length.
Since the SD was not available to us at the time of the project, we performed BD simulations

in the far-field (RPY) approximation. In Section 4.2, we show that far-field hydrodynamic inter-
actions underestimate the slowdown of the diffusion upon crowding. A natural question is if one
needs to include the far-field hydrodynamic interactions in our simulations. However, without
far-field hydrodynamic interactions, the description of translational (Fig. 4.8a) and rotational
(Fig. 4.8b) diffusion of bead chains is unreliable. Hydrodynamic radius of dsDNA without ac-
counting for hydrodynamic interactions amounts to 9.1 nm, which is approximately 2.5 times
larger than the value obtained with far-field hydrodynamic interactions (≈ 2.3 times larger than
the value obtained experimentally). Frembgen-Kesner & Elcock [183] previously reported a
similar effect in BD simulations of 11 different proteins. The rotational diffusion coefficient
without hydrodynamic interactions is underestimated as well (0.871 vs. 1.225 rad2 µs−1).
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Figure 4.8: Dependence of dsDNA model on hydrodynamic interactions in BD simulations.
Comparison of (a) TAMSD and (b) OA obtained with (red) and without (black) far-field hydro-
dynamic interactions.

4.3.3 Simulation details

We performed BD simulations with a customized version of the BD_BOX software (Appendix D.1).
The model macromolecules were placed in cubic boxes of 75 nm× 75 nm× 75 nm, and we ap-
plied periodic boundary conditions in all three directions. The time step ∆t was 0.5 ps, and
simulations lasted for 20 µs (5 for xdsDNA = 75%). We accounted for far-field hydrodynamic
interactions with the Ewald-summated generalized RPY approximation and, following Ando
& Skolnick [36], performed Choleski decomposition every 100 steps to speed up simulations.
We performed Ewald-summation of the diffusion matrix with α =

√
π, mcutoff = ncutoff = 2

(Appendix B). We used the Iniesta-Garcia de la Torre propagation scheme [184] (Eq. A.4). Sim-
ulations were performed at room temparature T = 293.15 K, using the Debye screening length
κ−1 = 2.3 nm, dynamic viscosity η = 1.005 cP, and relative dielectric constant ε = 80.36

(corresponding to the viscosity and dielectric constant of water at room temperature). Param-
eters for repulsive and attractive interactions (Eqs. A.7 and A.8) were: εLJ = 0.37 kcal mol−1,
σ = 0.15 nm. To avoid large forces causing numerical problems, for separations between the
macromolecules’ surfaces below rmin = 0.1 nm, we kept the magnitude of force fixed and
equal to F (rmin). We also set the upper cutoff for the repulsive interactions to 15 nm and for
the DLVO electrostatic interactions to 25 nm. We accounted for macromolecules’ roughness
with the corresponding parameters (Eq. A.10) h equal to 0.8, 0.34, and 0.6, for Ficoll70, ds-
DNA and dsDNA-S, respectively. Since we did not have the data for the radii of gyration, we
have chosen h in such a way that h/a is the same as for macromolecules with the similar size
taken from ref. [36] (Ribonuclease for dsDNA, Phosphoglycerate dehydrogenase for Ficoll70
and dsDNA-S).
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Table 4.2: Compositions, occupied volume fractions φocc and molar fractions x of simu-
lated Ficoll70-dsDNA(-S) mixtures. NF, NdsDNA, and NdsDNA−S are the numbers of Ficoll70,
dsDNA, and dsDNA-S, respectively, in the simulation system.

NdsDNA NF φocc (%) xdsDNA (%)
0 42 5.1 0.0
14 41 5.0 25.4
39 39 5.0 50.0
104 35 5.0 74.8

NdsDNA−S NF φocc (%) xdsDNA−S (%)
59 20 5.03 74.68

We obtained diffusion coefficients from TAMSD with a window length equal to 50 ns. The
long-time diffusion coefficients were obtained by evaluatingD(t) at t = 5 µs. Uncertainty of the
Dl due to sampling error was estimated by dividing the simulations into 5 subsets and computing
standard deviation of the mean, while treating the subsets as independent “measurements”.

We used Ficoll70-dsDNA mixtures with volume fractions of 5% and molar fractions of 0,
25, 50, and 75% (Fig. 4.9a and Table 4.2). Since every dsDNA consists of eight beads, going
to a higher dsDNA molar fraction on that level of description is not feasible. Note that due
to the radius shift in the repulsive WCA potential (Eq. A.9), we computed occupied volumes
assuming that the bead hard-core radii are smaller by σ than the hydrodynamic radii.

4.3.4 Diffusion in Ficoll-dsDNA mixtures

Motivated by the experimental results (Fig. 4.5), we considered Ficoll70-dsDNA mixtures of
various composition. BD simulations show that the decrease in the diffusion coefficient is more
substantial in systems with a higher molar fraction of dsDNA particles (Fig. 4.9b). This behav-
ior is in qualitative agreement with the experimental results and previous on-lattice simulations
[141, 185]. The drop in diffusivity in the system with xdsDNA = 75% is over three times larger
than in the Ficoll70-only system with the same φocc. However, quantitatively the BD results
still differ from the FCS results. Judging by the orders of magnitude of hydrodynamic effects
(Section 4.2), the discrepancy is unlikely to arise from the absence of the near-field hydrody-
namic interactions. Moreover, the curvature of Dl(φocc) predicted by BD is different from the
observed experimentally. In FCS, the decrease in the diffusion coefficient with xdsDNA is ini-
tially strong, and then the slope becomes less steep. In BD, it is the other way round (compare
Fig. 4.5c vs. Fig. 4.9b). Despite these differences, our results prove the existence of the shape
effects by virtue of which dsDNA crowders hinder the diffusion more effectively than Ficoll70.

To better understand that shape effect, we calculated volumes excluded to Ficoll70 in the
systems under study (Fig. 4.9c). We estimated the total excluded volumes by summing the
volumes excluded by crowder to tracer (Eq. 2.21) over all crowders, assuming their additivity.
We also computed it more accurately with MC method (Section 3.3); the values are gathered in
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Figure 4.9: Diffusion of Ficoll70 in Ficoll70-dsDNA mixtures from BD simulations. (a)
Simulated systems of φocc ≈ 5% and xdsDNA = 0, 25, 50, and 75%. (b) Diffusion coefficient of
Ficoll70 in mixtures of Ficoll70 and dsDNA as a function of xdsDNA from BD simulations with
far-field hydrodynamic interactions. (c) Volumes excluded to Ficoll70 (red) and Streptavidin
(green) as a function of molar fraction of xdsDNA. The solid line is a rough estimate assuming
that the total excluded volume fraction is a sum of individual crowder contributions (Eq. 2.21).
The values denoted by markers were computed using Monte Carlo (MC) method (Section 3.3)
and account for the mutual overlaps between the individual excluded volumes. Dashed lines on
the plot do not represent data but serve as a guide to the eye. Figure adapted from ref. [127].

Table 4.3: Volume fraction φex excluded to Ficoll70 tracer in mixtures of Ficoll70 and
dsDNA/dsDNA-S. xdsDNA and xdsDNA−S are molar fractions ot dsDNA and dsDNA-S, respec-
tively. Uncertainties were computed as standard deviations of a mean.

xdsDNA (%) φex (%)
0 35.4± 0.7
25 41.6± 0.5
50 50.8± 0.9
75 70.7± 0.8

xdsDNA−S (%) φex (%)
75 45.2± 0.6

Table 4.3. Here, unlike in other sections, we withdrawn one tracer particle from the simulation
box before each insertion, so that after the insertion the system had the same composition as in
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Table 4.4: Volume fraction excluded to dsDNA/dsDNA-S tracer in a mixture of Ficoll70
and dsDNA/dsDNA-S of xdsDNA = 75%. xdsDNA and xdsDNA−S are molar fractions ot dsDNA
and dsDNA-S, respectively. Uncertainties were computed as standard deviations of a mean.

φex (%)
xdsDNA = 75 % 42.4± 0.5
xdsDNA−S = 75 % 32.1± 0.3

the simulations. Although this slightly shifts down the obtained values, it does not affect the
results qualitatively, so for simplicity we resigned from that procedure in other sections. We
found that for both streptavidin and Ficoll70, the excluded volume fraction increases upon an
increase of the dsDNA molar fraction while keeping the φocc fixed. This increase is because
the long dsDNA chains exclude more volume relative to what they occupy compared with the
Ficoll70 crowders.

4.3.5 Spherical vs. elongated crowders

One may argue that a dsDNA differs from Ficoll70 not only in shape but also in size (hydro-
dynamic radius of 3.7 vs. 5.1 nm), which can also affect particle’s diffusion [186]. To single
out the shape effects, we performed additional simulations with dsDNA particles exchanged for
spheres with radius equal to the dsDNA hydrodynamic radius, which we refer to as dsDNA-S,
S stands for sphere (Fig. 4.10a,b). We assumed the total electric charge the same as dsDNA, but
we also performed the same simulations without electrostatic interactions and excluded their in-
fluence on the discussed effect. Note that since the volume of dsDNA is smaller than dsDNA-S,
keeping φocc and xdsDNA fixed does not imply a one-to-one exchange of dsDNA for dsDNA-S
(Table 4.2).

The diffusion coefficient of Ficoll70 in the system with dsDNA was decreased three times
more strongly than in the system with dsDNA-S (12 vs. 4%, see Fig. 4.10c), both with and with-
out electrostatics. We also computed the volumes excluded to Ficoll70 in the studied systems
(Table 4.3). As expected, the fraction of volume excluded to Ficoll70 is substantially smaller in
systems with spherical dsDNA-S (45.2 vs. 70.7%). However, in Fig. 4.10d, we see that the dif-
ference in the diffusion coefficients is much smaller when we treat dsDNA/dsDNA-S as tracers.
Without electrostatic interactions, both curves slightly shift up, but the difference between them
is even smaller. The diffusion coefficients of dsDNA and dsDNA-S in the corresponding sys-
tems are similar, although the difference in the excluded volumes is relatively high (Table 4.4),
similar to the one obtained for Ficoll70. It seems that excluded volume-based argument works
when we compare systems with the same tracer and different crowding media, but not in the
case of two different tracers.

Thus, we showed, using experiments (FCS) and simulations (BD), that specifying the occu-
pied volume fraction of binary mixtures of dsDNA (elongated) and Ficoll70 (spherical) crow-
ders does not suffice to predict the diffusion coefficient of tracers therein. Elongated crowders
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Figure 4.10: Spherical vs. elongated crowders: results of BD simulations. (a) Comparison of
dsDNA polymer chain model and a sphere of equal hydrodynamic radius, which we refer to as
dsDNA-S. (b) Simulation snapshots of Ficoll70-dsDNA and Ficoll70-dsDNA-S mixtures. Note
that we keep the molar fraction of dsDNA xdsDNA and occupied volume fraction φocc constant,
so the number of dsDNA is not equal to the number of dsDNA-S. (c) Time-dependent diffusion
coefficient of Ficoll70 in a mixture with dsDNA-S (dashed) and dsDNA (solid). (d) Time-
dependent diffusion coefficient of dsDNA/dsDNA-S in a mixture of Ficoll70 with dsDNA-S
(dashed) and dsDNA (solid). The shadowed areas denote the uncertainties due to the sampling
error. Figure reprinted from ref. [127].

hinder the diffusion more efficiently than spherical ones.
A similar effect was reported previously by Ellery et al. [141] (Section 4.1.3.1) and Balbo et

al. [185]. Using BD and FCS, Balbo et al. [185] observed that in mixtures of heart-shaped BSA
and Y-shaped IgG, the latter lead to a higher slowdown of tracer diffusion and that the crowder
shape has a more substantial influence on diffusion coefficient than the tracer shape. How-
ever, the authors used rigid protein models and accounted for hydrodynamic interactions using
the mean-field approach based on rescaling short-time diffusion coefficients [148] (Eq. 4.7a),
which, on the one hand, accounts better for the diffusion slowdown by directly rescaling diag-
onal elements of the diffusion matrix, but, on the other hand, does not introduce offdiagonal
elements, which are responsible for correlations between the motions. Furthermore, in our
study, the difference in shape is more prominent, and we pinpoint the very shape effect by ex-
changing nonspherical models for their spherical “equivalents” (i.e., the spherical particles with
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Figure 4.11: Translational and rotational diffusion of dsDNA in Ficoll70-dsDNA mixtures:
results of BD simulations. (a) Schematics presenting the motion of dsDNA as a combination
of Brownian motion of its center of geometry and rotational Brownian motion of its end-to-end
vector. The shaded area denotes the hydrodynamically equivalent sphere. (b) Long-time rota-
tional and translational diffusion coefficients of dsDNA in mixtures with Ficoll70 obtained from
BD simulations with far-field hydrodynamic interactions. Lines on the plot do not represent data
but serve only as a guide to the eye. Figure adapted from ref. [127].

the same hydrodynamic radius).

4.3.6 dsDNA rotational diffusion

Apart from translational diffusion of Ficoll70, we also analyzed translational and rotational
diffusion of dsDNA in the same systems (Fig. 4.11a). We computed rotational diffusion using
two approaches: fitting an exponential function to OA and fitting a linear function to a short-
time mean squared angular displacement (MSAD). The results presented in Fig. 4.11b were
obtained using the OA approach. The conclusion is that the translational diffusion is more
sensitive to macromolecular crowding than the rotational diffusion. This result is in line with
previous works [37, 105, 185], although the opposite was also reported [160]. Mean rotation per
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traversed distance (Eq. 4.14) decreases with crowding. Additionally, the shape effect reported
for translational diffusion is present in rotational motion as well.

4.4 Effect of attractive interactions

Although we observe the shape effects in our BD simulations with short-range repulsion (Fig. 4.9),
in qualitative agreement with FCS results (Fig. 4.5), the BD and FCS do not agree quantitatively.
The question remains what may be the reason for such a behavior. The most enigmatic feature
of the observed drop of streptavidin diffusion in dsDNA-Ficoll70 mixtures is that the majority
of the drop happens at the minimal dsDNA molar fraction xdsDNA used in the study (Fig. 4.5c).
It seems that a relatively small concentration of dsDNA changes something important in the
system, and then the further slowdown upon increasing xdsDNA is much slower. We hypoth-
esized that it might be due to an attractive interaction between dsDNA and streptavidin. In
experiments, streptavidin is added to the sample at nanomolar concentration, much lower than
dsDNA and Ficoll70. If there is some preferential attraction between a dsDNA and streptavidin,
even at small xdsDNA we may observe the majority of streptavidin tracers forming transient com-
plexes with dsDNA. The complexes would be less mobile than isolated streptavidin, which can
lead to a further decrease in the diffusion coefficient.

To quantify this possibility, we performed additional BD simulations with attractive Lennard-
Jones (LJ) interactions (Eq. A.8). Following Ando & Skolnick [36], we used the LJ energy
εLJ = 0.37 kcal mol−1, as it allowed for reproducing the GFP translational diffusion coefficient
in the model E. coli cytoplasm. We focused on the system with xdsDNA = 25% and considered
two possibilities: attractive interactions between Ficoll70 and ds-DNA only and attractive in-
teractions between all particles (Fig. 4.12a). The differences are noticeable in Ficoll70-dsDNA
RDF (Fig. 4.12b). Without attractions, there are no signs of Ficoll70-dsDNA aggregation. With
attractions between dsDNA and Ficoll70 only, we see a single maximum — a signature of the
formation of dsDNA-Ficoll70 complexes. When Ficoll70-Ficoll70 and dsDNA-dsDNA attrac-
tions are turned on as well, we see an aggregation of bigger Ficoll70-dsDNA complexes resem-
bling a solid-like structure with consecutive maxima in the dsDNA-Ficoll70 RDF plot (see also
the snapshots in Fig. 4.12a). The diffusion coefficient of Ficoll70 predictably decreases when
attractions are at play (Fig. 4.12c). We note that the D(t) for attractions between all particles
is not based on TAMSD, but on MSD, as the system is out of equilibrium and moves to the
aggregated state (nonergodicity). However, the case with Ficoll70-dsDNA attractions only does
not show significant differences between MSD and TAMSD.

These BD results do not directly correspond to the experimental results because, in FCS,
streptavidin is present at a much lower concentration than dsDNA, whereas in BD simulations
there is more Ficoll70 than dsDNA. To relate the FCS and BD results, we proceed as follows.
In BD simulations in which Ficoll70 and dsDNA attract each other, we observe two different
populations of Ficoll70 particles — free and bound to dsDNA. Then, the apparent diffusion
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Figure 4.12: Effect of attractive interactions on macromolecular diffusion. (a) Comparison
of BD snapshots of systems with no attractive interactions, attractive interactions only between
dsDNA and Ficoll70, and attractive interactions between all macromolecules in systems of
φocc = 5% and xdsDNA = 25%. (b) Radial distribution function (RDF) between Ficoll70 and
dsDNA center of geometry in three cases introduced above. The vertical dotted line denotes the
sum of Ficoll70 and dsDNA bead radii. (c) Time-dependent diffusion coefficient of Ficoll70
in three introduced cases. The curve for attraction among all macromolecules is obtained from
ensemble-averaged MSD (without time-averaging) as the system is not in equilibrium and Fi-
coll70 spheres aggregate. The shadowed areas denote the uncertainties due to the sampling
error. Figure adapted from ref. [127].

coefficient is an average of the bound Dbound and free Dfree diffusion coefficients weighted by
the fraction of bound Ficoll70, f , i.e.:

D = fDbound + (1− f)Dfree. (4.15)

Note that this equation neglects the higher order complexes between Ficoll70 and dsDNA.
We analyzed the time-dependent distance matrix to estimate the fraction of Ficoll70 macro-
molecules in close contact with dsDNA beads. We set a distance threshold at the position of
the first maximum at the RDF plot (Fig. 4.12b) and obtained f ≈ 0.085 in the system with
attractive interactions between Ficoll70 and dsDNA, and f ≈ 0.003 in the system without at-
tractions. After plugging it into Eq. 4.15, we obtained Dbound = 0.35 ± 0.29. The resulting
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uncertainty is high due to sampling error, but it covers the experimental result, which supports
the hypothesis of streptavidin-dsDNA attraction. We note, however, that attractive interactions
between streptavidin and dsDNA have not been reported before, thus more work needs to be
done to fully rationalize the FCS results.

4.5 Effect of macromolecules’ softness

4.5.1 Previous studies

The majority of simulations assume that polymeric crowders closely resemble hard spheres,
either explicitly using hard-sphere potential, or using very steep, WCA potential. However, as
pointed out by Luby-Phelps et al. [102] and Junker et al. [126], this assumption is not always
justified. Some polymers, like Ficoll, exist in a compact form, which in dilute and semi-dilute
regimes is reasonably well approximated with a hard-sphere model. On the opposite side of the
spectrum, there are expanded and soft polymers, e.g., Dextran, PEG, and PEO, which behave
differently both as tracers [102, 103] and crowders [126, 187].

In 2018, Blanco et al. [187] proposed to account for the macromolecules’ softness via a
shoulder-shaped chain entanglement softened potential (CESP) in the following form:

U(r) = Us(r; `c) +
U0

2

[
1− tanh

(
a`c

`e − `c
(r − [`e + `c])

)]
, (4.16)

where Us is a short-range potential (WCA, hard-sphere, r−n, etc.), `c is a hard-core distance
below which Us steeply increases, `e is an entanglement distance setting the extension of CESP
shoulder, U0 is the energy cost of chain entanglement, and a is a lengthscale-setting parame-
ter (set to 1 nm by Blanco et al. [187]). CESP definition requires every marcomolecule to be
defined with two separate sizes: hard-core radius ac and entanglement radius ae. Then, param-
eters `c and `e are computed as sums of the corresponding radii ac and ae. The authors of ref.
[187] fitted U0 to reproduce the concentration-dependence of streptavidin diffusion coefficient
in Dextran50; the BD simulations with the CESP potential (Eq. 4.16) correctly predicted the
respective dependence in Dextran10, Dextran400, and Dextran700.

Junker et al. [126] investigated with FCS the translational diffusion of various biologically-
relevant tracers differing in size and shape, among others: 16-nm-long dsDNA, streptavidin,
GFP, and IgG, in artificially crowded media composed of Ficoll (hard) and PEG/PEO (soft)
crowders of various molecular masses. The authors reported a stronger diffusion slowdown in
PEG/PEO crowders at the same occupied volume fraction φocc [126]. However, the volumes of
the crowders used to convert between the concentrations and occupied volume fractions were
different from the values resulting from the assumption that they are spheres of volume 4πa3/3,
where a is the hydrodynamic radius. The authors of ref. [126] used specific volumes of Ficoll
and PEG/PEO of 0.65 mL g−1 and 0.83 mL g−1, respectively. Instead, one can compute φocc
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Table 4.5: Specific volumes 1/ρ recalculated based on hydrodynamic radii a and molecular
masses m, assuming that polymeric crowders are spherical.

1/ρ (mL g−1) [126] a (nm) [126] m (kDa) 1/ρ(a,m) (mL g−1)
Ficoll70 0.65 5.1 70 4.78

Ficoll400 0.65 10 400 6.30
PEG35 0.83 5.7 35 13.34
PEO100 0.83 10.4 100 28.36
PEO200 0.83 15.4 200 46.05
PEO300 0.83 19.4 300 61.37

0 20 40

Occupied volume fraction φocc (%)

0.0

0.2

0.4

0.6

0.8

1.0

D
/D

0

a dsDNA

F70

F400

P35

P100

P300

Eq. 4.6

0 20 40

Occupied volume fraction φocc (%)

0.0

0.2

0.4

0.6

0.8

1.0

b streptavidin

Figure 4.13: Translational diffusion in crowders of different softness measured with FCS.
Values for two tracers are shown: (a) dsDNA and (b) streptavidin. The open symbols denote the
data originally reported by Junker et al. [126]. The filled symbols denote the data recalculated
by assuming that the specific volumes of polymeric crowders are equal to specific volumes
of spheres having the same molecular mass and radius equal to the polymer’s hydrodynamic
radius. F in legend stands for Ficoll, P stands for PEG/PEO. Dashed line represents theoretical
result for identical spheres by Cichocki & Felderhof [147] (Eq. 4.6).

from the molecular masses and hydrodynamic radii, assuming that all crowders are spherical
(Table 4.5). The specific volumes computed this way are between one and two orders of mag-
nitude larger than those used by Junker et al. [126]. As shown in Fig. 4.13, after recalculating,
the differences between the diffusion coefficient decrease in hard and soft crowders become
much smaller and do not lead to any definite conclusion. After the recalculation, the majority of
datapoints fall closer to the theoretical predictions of Cichocki & Felderhof [147] for identical
spheres (Eq. 4.6). However, both streptavidin and dsDNA are smaller than the crowders, so it
agrees that the slope of D(φocc) is less steep than in Eq. 4.6. Note that the resulting volume
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Table 4.6: CESP parameters for models of hard and soft macromolecules.

ac (nm) ae (nm) βU0 a (nm)
hard 5.1 5.1 1.2 5.1
soft 3.35 6.85 1.2 5.1
hard 5.1 5.1 0.8 5.1
soft 2.5 7.7 0.8 5.1

fractions become high, suggesting that polymers might entangle and form a polymeric mesh-
work.

4.5.2 Model

As it emerges from the short survey above, the studies of the effect of crowder softness on tracer
diffusion appeared only recently and are rather scarce. The existing studies do not single out
the effect of softness systematically, either adding softness on top of hard particles to obtain
a better reproduction of experimental data like Blanco et al. [187], or using crowders which
differ not only in softness but also in size, and in very high concentrations, like Junker et al.

[126]. The aim of our study was to isolate the effect of crowder softness on diffusion in crowded
environments, including answering the question of whether the result is dependent on the size
and shape of the tracer.

We approached the problem by comparing the crowding by electrically-neutral macro-
molecules, which differ in their softness but are otherwise equivalent. To this end, we used
the CESP (Eq. 4.16) and set ac = ae = a = 5.1 nm for hard particles (the same as for Ficoll70
in Sections 4.2 and 4.3) and (ac+ae)/2 = a for soft particles. Thus, we introduced the softness
by shrinking ac and expanding ae by the same amount (Fig. 4.14a). For the particles to be equiv-
alent, we introduced a constraint on the ac and ae, such that they lead to the effective volume
vocc occupied by soft and hard particles being equal. For a hard particle, vocc is a volume of the
sphere with radius a. For a soft particle, we computed vocc with the following integral:

vocc = 4π

∫ ∞
0

r2(1− exp[−βU(r; ac, ae, U0)])dr. (4.17)

We found ae and ac for a given entanglement energy U0 by equating Eq. 4.17 to the hard-sphere
volume, using the bisection method with additional condition of (ac + ae)/2 = a. Results are
presented in Fig. 4.14b as a dependence of U0 on the relative splitting (ae − ac)/ac. The extent
of the entanglement decreases with the increase of the entanglement energy U0. This kind of
soft-hard correspondence is equivalent to equating the second virial coefficients for hard and
soft particles [189]. For BD simulations, we picked two points from Fig. 4.14b (Table 4.6),
corresponding to βU0 = 0.8 and 1.2 (β = 1/kBT ). Note that the entanglement energy U0

corresponds to the height of the respective potential shoulder (Fig. 4.14c).

60



Figure 4.14: Models of hard and soft particles. (a) Juxtaposed models of two soft particles
(above) and one soft and one hard particle (below). The opaque, dark-grey sphere denotes the
volume restricted by a hard-core radius (impenetrable) ac, whereas the partially transparent,
light-grey pictures the extension of the CESP shoulder – entanglement radius ae (Eq. 4.16). (b)
Relation between the extension of soft interactions (ae−ac)/ac and the entanglement energyU0,
assuming constant effective occupied volume 555.6 nm3 equal to the occupied volume of the
hard particle. The crossmarks denote the values of parameters used in simulations (Figs. 4.15,
4.17, and 4.18). (c) CESP between two soft particles parametrized by the values indicated by
crossmarks in panel b (the same color code). For comparison, the hard-sphere potential is also
plotted. The vertical dotted lines mark the hard-core diameter 2ac. Figure reprinted from ref.
[188].

4.5.3 Simulation details

We performed BD simulations with a customized version of the BD_BOX software (Appendix D.1).
We placed the model macromolecules in cubic boxes of 85 nm × 85 nm × 85 nm, and applied
periodic boundary conditions in all three directions. The time step ∆t was 0.5 ps, and sim-
ulations lasted for at least 10 µs. We accounted for far-field hydrodynamic interactions with
the Ewald-summated generalized RPY approximation and, following Ando & Skolnick [36],
performed Choleski decomposition every 100 steps to speed up simulations. We performed
Ewald-summation of the diffusion matrix with α =

√
π, mcutoff = ncutoff = 2 (Appendix B).

We propagated the BD with the Iniesta-Garcia de la Torre propagation scheme [184] (Eq. A.4).
The temparature T was 298.15 K, the Debye screening length κ−1 = 0.96 nm, dynamic viscos-
ity η = 1.02 cP, and relative dielectric constant ε = 78.54. Parameters for repulsive potential
(Eq. A.7) were: εLJ = 0.37 kcal mol−1, σ = 0.15 nm. To avoid large forces causing numerical
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Table 4.7: Compositions, occupied volume fractions φocc and molar fractions xdsDNA of
simulated mixtures of hard and soft macromolecules.

φocc (%) xH (%) xS (%) NH NS

10 100 0 111 0
10 72 28 81 30
10 28 72 31 80
10 0 100 0 111
30 100 0 333 0
30 0 100 0 333

Table 4.8: Volumes excluded by a single hard/soft particle to another hard/soft particle.

Vex(H −H) Vex(H − S) Vex(S − S)
βU0 = 0.8 8vocc 6.14vocc 5.85vocc

βU0 = 1.2 8vocc 7.20vocc 6.92vocc

problems, for separations between the macromolecules’ surfaces below rmin = 0.08 nm, we
kept the magnitude of force fixed and equal to F (rmin). We also set the upper cutoff for the
repulsive interactions to 15 nm and for electrostatic interactions to 25 nm. Compositions of the
simulated systems are shown in Table 4.7.

We obtained diffusion coefficients from TAMSD (Eq. A.14) with a window length equal
to 5 ns. The long-time diffusion coefficients were obtained by averaging D(t) around t =

5 µs. Uncertainty of the Dl due to sampling error was estimated by dividing the simulations
into 5 subsets and computing the standard deviation of the mean, while treating the subsets as
independent “measurements”.

4.5.4 Diffusion in soft and hard crowders

We simulated mixtures of soft and hard particles (Fig. 4.15a) with effective occupied volume
fraction φocc = 10% and molar fraction of hard particles xH = 27% (Table 4.7) for two different
sets of CESP parameters (Table 4.6 and crossmarks in Fig. 4.14b). Diffusion coefficients of hard
and soft particles increase with increase of the crowder softness controlled by the entanglement
extension (ae − ac)/ac (Fig. 4.15b). The effect is similar, no matter whether we consider hard
or soft particles as tracers, but the diffusion coefficients of soft particles are higher.

We also computed effective volumes excluded by soft and hard crowders using MC simula-
tions (Section 3.3). Hard particle excludes 8vocc (vocc being its volume) to another hard particle,
whereas a soft particle with βU0 = 1.2 excludes only ≈ 7.2vocc to a hard particle and ≈ 7vocc

to another soft particle. Corresponding values for a soft particle with βU0 = 0.8 are even lower
(Table 4.8). Thus, soft crowders hinder diffusion of other particles less strongly because they
exclude less volume to a tracer, either hard or soft.

Next, we studied diffusion in mixtures of hard and soft (βU0 = 1.2) particles. We consid-
ered occupied volume fraction φocc = 10% and various molar fractions of hard particles xH
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Figure 4.15: Diffusion in systems of hard and soft macromolecules. (a) Snapshot of a mix-
ture composed of soft and hard particles used in BD simulations. (b) Dependence of diffu-
sion coefficient of soft and hard tracer in hard-soft mixtures of xH = 27% on the extent of
the soft interaction, keeping the effective occupied volume fraction φocc = 10%. The value
(ae − ac)/ac = 0 corresponds to a hard particle. (c) Dependence of diffusion coefficient of soft
(βU0 = 1.2) and hard tracer in hard-soft mixtures on the molar fraction of hard particles, keep-
ing the effective occupied volume fraction φocc = 10%. (d) Snapshots of example 1-component
systems of hard/soft particles used in BD simulations. (e) Dependence of diffusion coefficient
of soft and hard tracer in 1-component systems on the occupied volume fraction φocc. Figure
reprinted from ref. [188].

Table 4.9: Excluded volume fractions in simulated mixtures of occupied volume fraction
φocc = 10 %.

φocc = 10 %, βU0 = 1.2
Tracer xS = 100 % xS = 73 % xS = 27 %

ac = 0 nm ae = 0 nm 9.90± 0.02% 9.95± 0.03% 9.99± 0.03%
ac = 5.1 nm ae = 5.1 nm 56.2± 0.5% 58.9± 0.7% 61.1± 0.7%
ac = 3.35 nm ae = 6.85 nm 54.4± 0.4% 56.1± 0.6% 57.3± 0.5%

(Fig. 4.15c). The diffusion coefficient in these systems gradually decreases upon increasing the
number of hard particles, which reflects the trend in the volume exclusion (Table 4.8). However,
since the excluded volume is not an additive property, we computed effective excluded volume
fractions in the simulated systems using the MC method (Section 3.3). The MC results support
our reasoning (Table 4.9).
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Table 4.10: Excluded volume fractions in simulated mixtures of occupied volume fraction
φocc = 30 %.

φocc = 30 %, βU0 = 1.2
Tracer xS = 100 % xS = 0 %

ac = 0 nm ae = 0 nm 27.6± 0.2% 30.10± 0.10%
ac = 5.1 nm ae = 5.1 nm 95.40± 0.12% 99.1± 0.2%
ac = 3.35 nm ae = 6.85 nm 94.00± 0.14% 98.1± 0.3%

Figure 4.16: IgG bead model. (a) Crystal structure of human IgG [190] taken from Protein
Data Bank (PDB ID: 1HZH) [31] and visualized using Mol∗ Viewer [191]. (b) Bead model
of IgG correctly reproducing its hydrodynamic radius (5.8 nm) and angle distributions [192].
Figure reprinted from Supplementary Information of ref. [188].

Figure 4.15e shows the dependence of the long-time diffusion coefficient on the effective
occupied volume fraction for one-component systems of hard and soft macromolecules. The
slope of the line representing hard particle systems is substantially larger than for soft parti-
cles. For φocc ≈ 30%, the crowding by hard particles leads to approximately four times larger
diffusion slowdown than in the case of soft crowders. Again, we see the same trends in the
excluded volume data (Table 4.10), but the differences in excluded volume are relatively small,
as compared to the differences in the diffusion coefficients. This is because the values are close
to 100%, so the possible differences are somewhat limited in such a concentrated regime.

4.5.5 Tracer shape effect

We next studied how the crowder softness (βU0 = 1.2) influences the diffusion of nonspherical
tracers. We chose an elongated 16-nm-long dsDNA, the same as in Section 4.3, and a Y-
shaped model of IgG (Fig. 4.16). The IgG model is characterized by a hydrodynamic radius
aIgG = 5.8 ± 0.2 nm, close to the experimental value of 6.0 nm [126]. Moreover, its angle
distrbutions are similar to the experimental ones [192]. The model consists of 6 beads of various
hydrodynamic radii (Table 4.11) with harmonic bond (Eq. A.12 and Table 4.12) and angle
interactions (Eq. A.13 and Table 4.13) between the beads.
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Table 4.11: Sizes of the subunits of IgG model.

Subunit a = ac = ae (nm)
A 4.5
B 1.0
C 2.42
D 2.42
E 2.42
F 2.42

Table 4.12: Values of equilibrium bond lengths and force constants in IgG model.

Subunit Bond length (nm) Force constant (kcal mol−1 nm−2)
A - B 6.0 1909.86595
B - C

3.9 1909.86595
B - E
C - D

3.0 1909.86595
E - F

Table 4.13: Values of equilibrium angles and force constants in IgG model.

Subunit Angle value Force constant (kcal mol−1 rad−2)
A - B - C

125.0◦ 0.05
A - B - E
B - C - D

180.0◦ 10.00
B - E - F
C - B - E 110.0◦ 0.05

Table 4.14: Compositions, occupied volume fractions and molar fractions of simulated
mixtures of hard and soft macromolecules with IgG and dsDNA.

Tracer φocc (%) xIgG/xdsDNA (%) xH/xS (%) NIgG/NdsDNA NH/NS

IgG 10 28 72 30 79
dsDNA 10 25 75 36 107

To understand whether the difference between the diffusion in hard and soft crowders pre-
sented in Fig. 4.15 remains similar irrespectively of the tracer size and shape, we simulated sys-
tems containing dsDNA and IgG tracers (Fig. 4.17a) with compositions shown in Table 4.14.
Consistently with the previous results (Fig. 4.15), we find that the diffusion of IgG is visibly less
hindered by soft crowders (Fig. 4.17b). However, for dsDNA, the difference between the diffu-
sion coefficients in hard and soft crowders is much smaller than for larger tracers. We used the
MC method (Section 3.3) to compute the effective volumes excluded by soft and hard crowders
to dsDNA and IgG tracers (Fig. 4.17c). Although the respective differences are relatively small,
they reflect the behavior of the diffusion coefficients, i.e., soft crowders exclude less volume to
hard and IgG tracers; conversely, soft crowders exclude more volume to dsDNA tracers. This
behavior suggests that, for some macromolecular shapes, the diffusion might be faster in hard
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Figure 4.17: Effect of the tracer shape on the diffusion in systems with soft and hard
crowders. (a) Models of nonspherical tracers, dsDNA and IgG, used in BD simulations (top)
and snapshots of them mixed up with hard/soft crowders (bottom). (b) Diffusion coefficient
of tracers in hard and soft (βU0 = 1.2) crowder systems of φocc ≈ 10% as a function of
their hydrodynamic radius. Hydrodynamic radii of dsDNA and IgG were obtained in separate
BD simulations of isolated particles. (c) Volume excluded by hard and soft crowder systems
of φocc = 10% to various tracers as a function of their hydrodynamic radius. (d) Heat map
presenting the difference between volume excluded by hard and soft crowders ∆φex = φhard

ex −
φsoft

ex to a dsDNA-like chain of various crowder size a/ab and aspect ratio `/2ab. Figure adapted
from ref. [188].

crowders.
Because the difference of the diffusion coefficients and excluded volumes of the dsDNA

were rather small, to investigate this relation more systematically, we computed volumes ex-
cluded to dsDNA-like chains as a function of the chain length `/2ab and crowder-to-bead radius
ratio a/ab (Fig. 4.17d). Depending on `/2ab and a/ab, ∆φex = φhard

ex − φsoft
ex may be positive

(hard crowders exclude more volume to the chain) or negative (soft crowders exclude more vol-
ume to the chain). Thus, the volume excluded to a polymer chain by soft crowders exceeds the
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Figure 4.18: Thin and long crowders diffuse faster in systems with hard crowders. (a)
Comparison of dsDNA model and its rescaled version with two times smaller bead radius ab.
(b) Diffusion coefficient of dsDNA models in hard and soft crowder systems of φocc = 10% in
a function of crowder size a/ab. Figure adapted from ref. [188].

volume excluded by hard crowders for sufficiently long and thin chains.
To verify whether the behavior of the excluded volume entails a similar behavior of dif-

fusion coefficients, we prepared a rescaled dsDNA model with two times smaller bead radius
ab (Fig. 4.18a). BD simulations with such rescaled dsDNA particles indeed show that thinner
chains diffuse faster in hard crowders than in soft crowders, in agreement with the predictions
based on the excluded volumes (Fig. 4.18b). This behavior is in contrast to the behavior of more
spherical particles, like hard and soft macromolecules and IgG.
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Chapter 5

Enhanced enzyme diffusion

One can best appreciate, from a study of living things, how primitive physics still

is.

Albert Einstein

In Chapter 4, I covered self-diffusion of macromolecules in thermodynamic equilibrium.
However, biological cells are not in equilibrium, unless dead. In some sense, their existence is
a sheer resistance to equilibration, as energy and matter fluxes are essential features of life at
the cellular level [193, 194].

It is natural that diffusive properties of macromolecules in the cytoplasm affect the chemical
kinetics of reactions happening therein, therefore affecting the metabolic networks driving life
[96, 97]. However, a growing body of evidence shows that the opposite might also be the case,
i.e., that the metabolic activity affects the diffusion of macromolecules immersed in “active”
cytoplasm [20, 21, 115, 194, 195]. For instance, Parry et al. [20] reported that the cytoplasm
of Caulobacter crescentus becomes glassified when its metabolic activity is halted by glucose
starvation, rendering it more viscous for macromolecules. In another work, Li et al. [195]
showed that the diffusivity of macromolecules in cells undergoing necroptosis increases in its
initial stages. Understanding the coupling between the metabolic activity and macromolecular
mobility is essemtial for a reliable simulation of living cells.

A possible explanation for the coupling of activity and mobility in living cells is the phe-
nomenon of enzyme diffusion enhancement [196–198], which is an enhancement of the enzyme
diffusion in systems containing substrates of the reaction it catalyzes. Moreover, Zhao et al.

[199] reported that active enzymes could affect the diffusion of passive particles. Although the
existence of enzyme diffusion enhancement is still debated [200, 201], and its studies are lim-
ited to dilute solutions, there are indications that it might be related to the observed cytoplasmic
glassification [194].

In this Chapter, we discuss enzyme diffusion enhancement, focusing on crowded systems.
After reviewing the literature in Section 5.1, in Section 5.2, I introduce a model enzyme that
exhibits a diffusion enhancement upon binding a substrate [202]. In Section 5.3, I describe
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its behavior in various crowded systems akin to intracellular environments. In Section 5.4, we
will see if and how microfluidic H-cell experiment, a versatile tool for, among others, diffusion
measurements, can be applied to measure enzyme diffusion enhancement.

5.1 Literature review

As already mentioned above, one of the reasons for metabolism-mobility coupling in cells may
be enhanced enzyme diffusion [196–198]. The effect was communicated by various authors for
a broad class of enzymes [203–214]. The experimental results are gathered in Table 5.1.
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The magnitude of the enzyme diffusion enhancement varies between studies and enzymes.
The enhancement ranges from just 5% for triose phosphatase reported by Riedel et al. [208] to
even 200% for urease claimed by Xu et al. [213], the majority falling somewhere between 10

and 40% [203, 205, 208–212]. However, some authors claim that the effect is merely an artifact
of the applied experimental methods [200, 201, 216] or a result of dissociation of oligomeric
enzymes [217, 218].

The two most probable mechanisms that may lead to the enzyme diffusion enhancement
are phoresis and conformational changes [194]. Phoresis is a movement driven by a gradient
of some material property, e.g., of the electric field in the case of electrophoresis, temperature
in the case of thermophoresis, and the concentration in the case of diffusiophoresis. Within
this mechanism, an enzymatic reaction is the source of such gradient itself, so one refers to
the effects as a self-electrophoresis [205], self-thermophoresis [219], and self-diffusiophoresis
[196, 220], respectively. In turn, conformational changes include size decrease [202, 203],
active swimming [216, 221], damping conformational fluctuations [209], and chemoacoustic
effects [208].

The most straightforward mechanism which may lead to an enhanced enzyme diffusion is
the change of the enzyme size upon binding a substrate. The size decrease, if lasting long
enough, would lead to an increase in the enzyme’s diffusion coefficient according to the Stokes-
Sutherland-Einstein (SSE) relation (Eq. 2.10). Such size changes are ubiquitous among en-
zymes. For instance, the radius of Escherichia coli H+-ATPase F1 subunit decreases by ca. 15%

in the presence of its substrate analog, AMP-PNP [222]. Indeed, Börsch et al. [203] observed
the enhancement of the H+-ATPase F1 subunit’s diffusion in the presence of AMP-PNP.

Oyama et al. [223] performed Brownian dynamics (BD) simulations of binary mixtures in
which small spheres modeled water, and large spheres, with fluctuating radii, modeled metabol-
ically active enzymes. They observed that even small radii fluctuations (≈ 4%) might lead to
glass-fluid transition, which could be a size-decrease mechanism for the metabolism-driven cy-
toplasm fluidization observed by Parry et al. [20] and Nishizawa et al. [21]. Clearly, the same
size changes could also lead to the enzyme diffusion enhancement, as described above.

All the aforementioned experiments were performed in vitro, in dilute solutions. As we ex-
tensively discussed in Chapter 4, such an approach does not give answers to the most intriguing
question: how the macromolecular transport behaves inside biological cells, which are crowded
by diverse macromolecules. To address this question, we study the dynamics of conformation-
changing enzymes (Section 5.2) in crowded environments with BD simulations (Section 5.3).

5.2 Fluctuating-dumbbell model

Illien et al. [224] introduced a dumbbell model of an enzyme that is composed of two subunits
fluctuating around an equilibrium separation. They showed that suppression of the separation
fluctuations upon binding a substrate might lead to an increase in enzyme diffusion coefficient,
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which they claimed to be consistent with the aldolase diffusion enhancement observed experi-
mentally [209], along with its Michaelis-Menten-like [225] substrate concentration dependence.

A similar model was analyzed with BD simulations by Kondrat & Popescu [202]. They
showed that, contrary to the results obtained by Illien et al. [209, 224], the suppression of
internal fluctuations leads only to a minor enhancement of the diffusion coefficient (≤ 5%).
Nevertheless, they showed that the bare size decrease upon binding a substrate, if sufficiently
large, could lead to a diffusion enhancement comparable to the one observed experimentally for
such enzymes.

Following ref. [202], we consider a fluctuating dumbbell composed of two spherical beads
of hydrodynamic radius a = 1 nm each (Fig. 5.1a). This model enzyme can adopt two distinct
conformations: open and closed, characterized by different bead-bead separations: `o = 2.5 nm

and `c = 1.1 nm, respectively. To compute the enzyme diffusion enhancement, we performed
two sets of BD simulations, corresponding to two extreme substrate concentration values: when
an enzyme can be in an open or closed conformation ([S] = 0) and when it is only in the closed
state ([S]→∞).

[S] = 0 regime is modeled implicitly by setting a double-well potential U , which has two
minima with equal depth at ` = `c and ` = `o and a potential barrier between them (Fig. 5.1b,
solid line):

U(`) =
16k`

(`o − `c)4
(`c − `)2(`o − `)2, (5.1)

where the characteristic energy k` is the height of the energy barrier separating the two states,
which we set to 7kBT in all simulations below. The potential U allows for fluctuations between
the two states, which mimicks the enzyme’s behavior in the absence of substrates. The popula-
tions of open and closed enzymes follow the Boltzmann distribution, their imbalance being due
to the higher entropy of the open state (Fig. 5.1c, solid line). This aspect of fluctuating-dumbbell
enzymes is discussed more extensively in Section 6.2.

[S] → ∞ regime is modeled implicitly too by setting a single-well potential Uc, with a
minimum at ` = `c (Fig. 5.1b, dashed line):

Uc(`) =
16k`

(`o − `c)4
(`c − `)2gc(`), (5.2)

where:

gc(`; `c, `o) =

(`o − `)2, if ` < `c

(`− 2`c + `o)
2, if ` ≥ `c.

(5.3)

In this regime, all enzymes are in the closed state (Fig. 5.1c, dashed line).
The diffusion coefficients for [S] = 0 and [S] → ∞ were extracted by fitting the MSD(t)
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Figure 5.1: Fluctuating-dumbbell enzyme model. (a) Two possible conformations of
fluctuating-dumbbell enzyme model, differing in equilibrium distance between the subunits
(`c < `o for closed; `o for open). When there is no substrate ([S] = 0), there is a dynamic
equilibrium of enzymes in the open and closed conformations. When substrate is in abundance
([S]→∞), all enzymes are closed. (b) Enzyme bonded potentials: U (red) with two equiener-
getic minima for [S] = 0 case and Uc (blue) with a single minimum for [S] → ∞ case. (c)
Equilibrium probability density of bead separation ` for potentials U and Uc. (d) The mean
squared displacement (MSD) obtained by 4000 independent BD simulations. Figure adapted
from ref. [226].

data from BD simulations with a linear function f(t) = 6Dt (Fig. 5.1d). The resulting diffusion
coefficients (T = 298.15 K, η = 1.02 cP) are D([S] = 0) = 153 nm2 µs−1 and D([S] →
∞) = 180 nm2 µs−1, which translate to hydrodynamic radii 1.40 and 1.19 nm, respectively.
This amounts to ≈ 17.6% of enzyme diffusion enhancement in infinite dilution (i.e., without
crowders, φocc = 0), comparable to the experimental results for F1 ATP-ase [203] (Table 5.1).
Hydrodynamic radii obtained from our BD simulations are also very close to the results of GRPY
algorithm (Appendix D.5) for computing the hydrodynamic radii of rigid bead structures: 1.44

for open and 1.20 nm for closed conformation.
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5.3 Effect of crowding

In this section, we discuss the interplay between the enzyme diffusion enhancement and the
diffusion slowdown due to macromolecular crowding. Moreover, we discuss the influence of
enzymatic activity on the diffusion of passive spheres mixed with the enzymes. To this end, we
performed BD simulations of systems composed of fluctuating-dumbbell enzymes (Section 5.2)
and passive spherical macromolecules.

5.3.1 Simulation details

We performed BD simulations with a customized version of the BD_BOX software (Appendix D.1).
We placed the fluctuating-dumbbell enzymes and passive spheres in cubic boxes of 25 nm ×
25 nm× 25 nm, and applied periodic boundary conditions in all three directions. The time step
∆t was 0.5 ps, and simulations lasted for 10 µs or more. We accounted for far-field hydrody-
namic interactions with the Ewald-summated (α =

√
π, mcutoff = ncutoff = 2, see Appendix B)

generalized Rotne-Prager-Yamakawa (RPY) approximation. Following ref. [36], to decrease
the computational cost we performed Choleski decomposition every 100 steps instead of do-
ing so in every step. We propagated the BD with the Iniesta-Garcia de la Torre scheme [184]
(Eq. A.4). The temperature T = 298.15 K, and dynamic viscosity η = 1.02 cP. Parameters
for repulsive interactions (Eq. A.7) were: εLJ = 0.37 kcal mol−1, σ = 0.15 nm. To avoid
large forces causing numerical problems, for separations between the beads’ surfaces below
rmin = 0.1 nm, we kept the magnitude of force fixed and equal to F (rmin). We also set the
upper cutoff for the repulsive interactions to 15 nm. We accounted for roughness of macro-
molecules (Eq. A.10) setting h = σ for all beads.

We obtained diffusion coefficients from time-averaged mean squared displacement (TAMSD)
(Eq. A.14) with a window length equal to 5 ns. The long-time diffusion coefficients were ob-
tained by averaging D(t) between 2.5 and 5 µs. Uncertainty of the Dl due to sampling error
was estimated by dividing the simulations into 5 subsets and computing standard deviation of
the mean, while treating the subsets as independent “measurements”. We quantified diffusion
enhancement δDmax

l in the following way:

δDmax
l =

Dl ([S]→∞)−Dl ([S] = 0)

Dl ([S] = 0)
. (5.4)

We prepared multiple mixtures of fluctuating-dumbbell enzymes and passive spheres (a =

1 nm) of various occupied volume fraction φocc and composition (Table 5.2), grouping them
into two categories. In enzyme crowding (Fig. 5.2a), we kept the number of passive spheres
constant (φocc ≈ 3%), and added enzymes to yield the total φocc = 8, 13, and 18%. In sphere
crowding (Fig. 5.2b), we kept the number of enzymes constant (φocc ≈ 5%), and added passive
spheres to reach the same φocc as in the case of enzyme crowding.
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Table 5.2: Compositions and occupied volume fractions of simulated mixtures of enzymes
and passive spheres. Nenz andNpass are numbers of enzymes and passive spheres in a simulated
system, respectively.

φocc (%) Nenz Npass

Enzyme crowding
8 100 100
13 200 100
18 300 100
Sphere crowding
3 0 100
8 100 100
13 100 296
18 100 492

a

enzyme crowding

b

sphere crowding

Figure 5.2: Sphere and enzyme crowding. The snapshots show an example of (a) enzyme and
(b) sphere crowding for the total occupied volume fraction φocc = 18%. In enzyme crowding,
the number of passive spheres (blue) is kept fixed, while the number of enzymes increases (red).
In sphere crowding, the number of enzymes is kept fixed, while the number of passive spheres
increases.

5.3.2 Enhanced diffusion of enzymes

As already mentioned, in the absence of crowders the enzyme diffusion enhancement exhibitted
by our fluctuatng-dumbbell model amounts to ≈ 17.6%, similar to the value reported for F1

ATP-ase by Börsch et al. [203]. We found that crowding decreases the diffusion coefficient
in the case of both [S] = 0 and [S] → ∞ (Fig. 5.3a). The decrease for enzyme and sphere
crowding is similar in the substrate abundance case ([S] → ∞). However, when there is no
substrate ([S] = 0), the decrease is more substantial when crowding is due to enzymes.

This behavior is due to the fact that when [S] → ∞, the enzymes are exclusively in the
closed conformation, resembling spherical particles owing to the significant overlap of the beads
composing them. This means that enzyme crowding and sphere crowding become qualitatively
similar. In turn, when [S] = 0, most enzymes are elongated, so they hinder diffusion more than
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Figure 5.3: Diffusion enhancement of fluctuating-dumbbell enzyme model in BD simula-
tions. (a) Diffusion coefficient of enzyme in two substrate concentration regimes and in two
different crowding media: sphere-dominated and enzyme-dominated, plotted as a function of
total occupied volume fraction φocc. (b) Diffusion enhancement in two aforementioned crowd-
ing media, plotted as a function of φocc. Lines on the plot do not represent neither experimental
data nor theory but serve only as a guide to the eye. Figure adapted from ref. [226].

the spheres with the same occupied volume (Section 4.3).
Irrespective of the occupied volume and type of crowding, we observed the diffusion en-

hancement, i.e., a higher diffusion coefficient for [S] → ∞. However, perhaps surprisingly,
the enhancement increased for the enzyme crowding and decreased for the sphere crowding
(Fig. 5.3b). This means that subtle features of the macromolecules composing the crowded mi-
lieu, such as their shape, can affect the enzyme diffusion enhancement not only quantitatively,
but also qualitatively.

5.3.3 Enhanced diffusion of passive tracers

Zhao et al. [199] showed with fluorescence correlation spectroscopy (FCS) and dynamic light
scattering (DLS) that inert tracers of various sizes, ranging from 0.57 nm (Rhodamine B) to
100 nm (Fluorescent Polymer Microspheres), experience the diffusion enhancement, when mixed
with urease or aldolase and their respective substrate. The authors interpreted it as a transfer of
diffusion enhancement between the active enzymes and passive tracers. To explore this possi-
bility, we analyzed the diffusion of passive spheres in mixtures with active enzymes modeled
by fluctuating dumbbells (Section 5.2).

Our results show that passive tracer diffusion enhancement is indeed present in concentrated
systems of conformation-changing enzymes (Fig. 5.4). Moreover, the diffusion enhancement
of passive spheres increases with increasing the enzyme concentration [E]. However, the mag-
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Figure 5.4: Enhanced diffusion of passive tracers in BD simulations. (a) Snapshots of BD
systems with increasing concentration of enzymes [E], while keeping the number of passive
spheres fixed. (b) Diffusion coefficient of passive sphere as a function of concentration of
fluctuating-dumbbell enzymes [E] for two substrate concentrations: [S] = 0 and [S] → ∞. (c)
Passive sphere diffusion enhancement plotted as a function of enzyme concentration [E]. Lines
on the plot do not represent neither simulation data nor theory but serve only as a guide to the
eye. Figure adapted from ref. [226].

nitude of the enhancement is smaller than in the case of enzyme enhanced diffusion, e.g., for
φocc = 18%, we observe 10% enhancement for spheres vs. 30% for enzymes.

We converted the occupied volume fraction φocc to enzyme molar concentrations [E] to com-
pare them with the experimental data [199]. The values for φocc = 8, 13, and 18% correspond
to 11, 21, and 32 mM, respectively. While the passive sphere diffusion enhancement in BD
simulations is qualitatively consistent with the experimental results by Zhao et al. [199], in the
experiments the enzymes were present in nanomolar concentration, whereas in our simulations
– millimolar. Therefore, the size change of the enzymes alone cannot explain the experimentally
observed passive tracer diffusion.
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5.4 H-cell microfluidics and enhanced enzyme diffusion

As discussed in Section 5.1, FCS experiments indicate the existence of the enzyme diffusion
enhancement in systems containing substrate, while some other, nonfluorescent methods, such
as DLS and nuclear magnetic resonance (NMR), do not detect it. It is natural to ask whether
the existence of this phenomenon can be tested with alternative techniques that have not been
used for this purpose so far, e.g., H-cell microfluidics, which has recently been introduced as a
versatile and robust method to measure diffusion coefficients [227, 228]. The following section
attempts to answer this question.

5.4.1 Principles of H-cell diffusion measurement

H-cell microfluidics diffusion coefficient measurement is based on the mass transport between
two concurrent laminar fluid streams via the interface between them [227, 228] (Fig. 5.5). One
of the flows, called donor stream (DS), initially contains a higher concentration of an analyte.
As the two streams meet and travel in parallel for a finite length of the H-cell channel L, the
analyte diffuses from the DS to the receiver stream (RS). For a fixed L, the total amount of the
analyte transferred from the DS to the RS depends on its transport diffusion coefficient D.

Yu et al. [228] used this method to measure diffusion coefficients of proteins such as lysozyme
and bovine serum albumin (BSA), varying the initial concentration in DS and RS, as well as the
ionic strength, buffer type, and viscosity. The obtained results are in reasonable agreement (up
to ≈ 20%) with the values obtained using alternative methods for protein diffusion measure-
ment. However, one has to realize that the measured transport diffusion coefficient, denoted
here by D to distinguish it from the self-diffusion coefficient D, is not the same property as
D elaborated on in Section 2.1 and defined using MSD. The transport diffusion coefficient is
defined by Fick’s diffusion law:

∂c

∂t
= D∇2c, (5.5)

and describes the time evolution of the analyte concentration c in a system with a concentration
gradient. In general, these two diffusion coefficients are not the same [229, 230], and equal only
for low analyte concentrations.

5.4.2 Mathematical description of H-cell diffusion measurement

Häusler et al. [227] showed that the problem of diffusion between DS and RS could be described
mathematically using a one-dimensional diffusion equation with position-dependent diffusion
coefficient D̃(y):

∂c

∂x
=
D
ṽ(y)

∂2c

∂y2
= D̃(y)

∂2c

∂y2
, (5.6)
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Figure 5.5: Schematic of an H-cell microfluidic device. Two laminar flows of fluid enter the
H-cell through the inlets (bottom of the scheme). The flow containing a higher concentration of
the analyte is referred to as a DS, and the other one is referred to as a RS. The two streams meet
on a finite length of the H-cell channel L, and the analyte diffuses from the DS to RS. Finally,
the DS and RS exit the H-cell through the outlets (top of the scheme), so their final composition
can be analyzed. The z-direction is perpendicular to the plane of the scheme, and the extension
of rectangular channels in that direction is denoted as 2b.

where x coordinate, parallel to the fluid flow, acts as a time. The diffusion in the x direction can
be neglected due to a much higher advective transport rate (Peclet number Pe > 100). ṽ(y) is
a y-dependent flow velocity in the x-direction averaged over z coordinate [227]

ṽ(y) =
m+ 1

m
v
[
1−

(y
a

)m]
, (5.7)

where 2a is the channel width and 2b is the channel height, m = 1.7 + 0.5( b
a
)−1.4, and v is

a macroscopic flow velocity. The position-dependent effective diffusion coefficient D̃ is the
lowest at the center of the flow and goes to infinity when approaching the edges (when |y|
increases).

The concentration c(y) smoothes out with x and, assuming that two streams do not diverge
(L→∞), reaches an equal value at every point:

lim
x→∞

c(y, x) =
c0

2
. (5.8)
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Figure 5.6: Example of the evolution of the analyte concentration along the H-cell channel.

For a finite value of L, the total concentrations in the DS and RS outlets are given by:

cDS(L) =

∫ a

0

c(y, L)dy; (5.9a)

cRS(L) =

∫ 0

−a
c(y, L)dy, (5.9b)

and encode the value of transport diffusion coefficient D.

5.4.3 Simulation of H-cell diffusion measurements

We denote the initial concentration of the analyte in DS with c0, and assume that initially there
is no analyte in RS, i.e.: 

c = 0, for y < 0;

c = c0, for y ≥ 0;

∂c
∂y

= 0, for y = −a and y = a

. (5.10)

We use a simple Euler discretization of Eq. 5.6 that leads to the following propagation scheme:

cn+1
i = cni + D̃i

∆x

(∆y)2

(
cni+1 − 2cni + cni−1

)
, (5.11)

where the upper indices enumerate discrete points in time, and lower indices – discrete points
in space along the y axis. ∆x and ∆y denote the integration step in the x and y directions,
respectively. The values of c at the edges are not propagated with Eq. 5.11, and instead are
always kept equal to the values of their neighbors in order to satisfy no flux boundary conditions
(Eq. 5.10). An example of the evolution of the concentration profile is shown in Fig. 5.6.
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Table 5.3: Michaelis-Menten parameters and diffusion coefficients of catalase, urease, and
aldolase used in calculations.

catalase urease aldolase
KM (mM) 96 32 13
kcat (s−1) 6.1 · 105 5.913 · 103 5
D([S] = 0) (nm2 µs−1) 60 31.8 42.6
D([S]→∞) (nm2 µs−1) 87 40.7 55.4

5.4.4 Application for the diffusion enhancement measurement

Two separate H-cell diffusion measurements must be compared to obtain the diffusion enhance-
ment using H-cell microfluidics. In one, the measurement is executed exactly like in ref. [228]
and described above, with c denoting the concentration of enzyme [E]. In the other one, sub-
strate excess has to be added to both DS and RS. Suppose an enzyme experiences the diffusion
enhancement due to the presence of substrate. In this case, the concentration of enzyme in the
RS outlet [E]RS shall differ between the two measurements, i.e.:

∆ [E]RS = [E]RS ([S]→∞)− [E]RS ([S] = 0) > 0. (5.12)

To keep the enzymatic reaction rate constant throughout the experiment, the substrate con-
centration has to be much higher than the enzyme concentration. We assume that the evolution
of substrate concentration follows the Michaelis-Menten equation [225], which gives:

d [S]

dt
= V (t) = −kcat [E]0 [S]

KM + [S]
, (5.13)

where kcat is the enzyme’s turnover number, KM is its Michaelis constant, [S] is the substrate
concentration, and [E]0 is the initial enzyme concentration.

According to Michaelis-Menten kinetics, the reaction rate V relative to the initial (maximal)
value V0, is given by the following equation:

V

V0

=
[S]

[S]0

[S]0 +KM

[S] +KM

. (5.14)

[S] / [S]0 may be computed by solving Eq. 5.13 numerically. From Eq. 5.14, we see that, ini-
tially, the reaction rate is kept virtually constant by the multiplicative factor counteracting the
linear decrease of concentration.

5.4.5 Example

We consider three enzymes for which the diffusion enhancement was reported, viz., catalase
[206], urease [205], and aldolase [209]. The Michaelis-Menten parameters kcat and KM were
taken from the Brenda database [231] (Table 5.3).
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Table 5.4: H-cell parameters used in calculations.

a (mm) b (µm) v (cm min−1)
0.5 5 0.1

0 5 10

L (cm)

0.00
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] 0
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Figure 5.7: Optimizing H-cell for diffusion enhancement measurement. Differences be-
tween the enzyme concentration in the RS with and without substrate ∆ [E]RS as a function of
the H-cell channel length L The optimal H-cell length corresponds to the maximum of ∆ [E]RS.

To optimize the value of H-cell channel length L for each enzyme, we propagated the en-
zyme concentration using Eq. 5.11, with the H-cell parameters shown in Table 5.4 and with
step sizes ∆x = 1 µm and ∆y = 10 µm for both values of diffusion coefficient – standard
D([S] = 0) and enhanced D([S] → ∞). For each enzyme, we chose the H-cell channel length
L that provides the largest difference in the enzyme concentration in the outlets for systems
with and without substrate ∆ [E]RS (Eq. 5.12). The values are 2.3 cm for catalase, 4.6 cm for
urease, and 3.4 cm for aldolase (Fig. 5.7).

Optimal H-cell channel length L and the flow velocity v determine the total time for which
we need to keep the reaction rate approximately constant – 23 min for catalase, 46 min for ure-
ase, and 34 min for aldolase. To gauge how to fulfill this condition, we compare the relative re-
action rates at these times (Eq. 5.14) for various enzyme and substrate concentrations (Fig. 5.8).
In each case, enzyme concentration has to be orders of magnitude smaller than the substrate
concentration to keep the reaction rate unchanged throughout the experiment. Assuming sub-
strate concentration to be 1 M, which is considered concentrated, the enzyme concentration
has to be in the nanomolar regime for catalase and urease, and in the micromolar regime for
aldolase.

Results presented in Fig. 5.7 and Fig. 5.8 can be combined to show what differences in
the concentrations between the two experiments are expected to confirm the reported enzyme
diffusion enhancement. The predicted absolute enzyme concentration changes in the RS are
plotted in Fig. 5.9. Results show that the changes in enzyme concentration needed to confirm the
diffusion enhancement are relatively small, nanomolar for catalase and urease, and micromolar
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Figure 5.8: Enzymatic reaction rate throughout the diffusion measurement in optimal H-
cell. Heat maps showing the reduction of the reaction rate at the end of the H-cell channel for
(a) catalase, (b) urease, and (c) aldolase. The plots are drawn in the space of the initial substrate
and enzyme concentrations ([S] and [E]). Contours indicate the concentrations at which the
reaction rate is equal to 90 and 80% of the initial value.
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Figure 5.9: Difference between the enzyme concentration in RS with and without substrate
for enzyme concentration ensuring constant reaction rate. Dependence of the (a) catalase,
(b) urease, and (c) aldolase concentration in the RS outlet on its concentration in the DS inlet
with and without substrate, assuming the enzyme diffusion enhancement. The substrate concen-
tration is 1 M. The H-cell channel length is optimized to maximize the concentration difference
∆ [E]RS for a given enzyme. These differences are denotes by shadowed areas.

for aldolase. Thus, highly accurate concentration measurements are required to capture the
reported enhanced enzyme diffusion with H-cell measurements.
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Chapter 6

Reactions under crowding

The non-physicist finds it hard to believe that really the ordinary laws of physics,

which he regards as the prototype of inviolable precision, should be based on the

statistical tendency of matter to go over into disorder.

Erwin Schrödinger

6.1 Literature review

Much of the scientific knowledge on biochemical reactions taking place in living systems, e.g.,
in biological cells, comes from in vitro experiments. However, biologically-relevant reactions
studied in test tubes may proceed differently than in their natural environment, which is crowded
with various macromolecules [15, 17, 18] (Section 2.3). Although these issues are rarely cov-
ered in classical biochemistry textbooks, the attention given to them is gradually growing.

Important experiments in this field concerned the properties of hemoglobin. It was observed
that the solubility of deoxy sickle hemoglobin decreases in solutions with a high concentration
of other proteins [65, 232–234]. The reason for that was not a coprecipitation but rather an
indirect effect of other proteins on hemoglobin precipitation equilibrium. The conclusion is
then that even if some proteins do not participate in a particular reaction, they can still affect it
indirectly [233].

Similar effects have been found to be omnipresent in biochemistry by multiple experiments,
theories and simulations [12, 235–247] and accounting for them is now considered crucial in
attempts to describe the behavior of biological systems. In the limit of ideally inert crowders
acting as hard solids, the effects of macromolecular crowding on chemical reactions are solely
due to entropic in origin depletion forces [59]. Depletion forces can be accounted for using
statistical mechanics with scaled particle theory (SPT) [67–70] (Section 2.4); the reader is re-
ferred to classic reviews [11, 12, 14, 16–18, 248–250] for an exhaustive discussion. Below I
summarize the most important conclusions.

The main effects of macromolecular crowding on the reactions involving biomacromolecules
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may be summarized as follows [65]:

1. Compact, spherical conformations are favored over extended and anisotropic conforma-
tions [16, 238, 239, 242, 243, 245, 246],

2. Association processes are enhanced [12, 235–237, 240, 241, 244],

3. Reaction kinetics depends on the details of the reaction mechanism and can be enhanced
or slowed down [251–255].

As a result, macromolecular crowding affects biological processes like cellular senescence
[256], gene regulation [163], cell growth [257], and aggregation of synuclein into amyloid
fibers observed in Parkinson’s disease [244, 258, 259].

The predictions for reaction kinetics are less evident as compared to thermodynamic ones,
because they depend on the details of the underlying mechanism. Slow protein association reac-
tions, which are transition-state limited, are accelerated by macromolecular crowding, whereas
diffusion-limited reactions slow down. The effect on reactions with mixed character is expected
to be more complex, even involving maxima of activity with respect to the occupied volume. In
the case of enzymatic reactions, the additional complexity emerges from the effect of macro-
molecular crowding on the structure of enzyme, i.e., its conformation and oligomerization.

The crowding effects are also sensitive to the size and shape of macromolecular crowders.
Smaller crowders affect the activity coefficients more significantly than large ones [94, 260].
This is explained by the fact that to occupy the same volume, a smaller number of large crowders
is needed and thus the occupied volume elements are clustered together, leaving large regions of
the system unoccupied. In contrast, smaller crowders tend to be more dispersed and leave much
smaller cavities for macromolecules to enter. Qin et al. [95] observed that the flap dynamics of
the HIV protease is affected more strongly by small crowders. Pastor et al. [254] analyzed the
effect of macromolecular crowding by Dextrans of two sizes on three enzymatic reactions. They
found that the reaction catalyzed by the largest enzyme considered depends not only on the total
occupied volume fraction, but also on the crowder size, which is not the case for the reactions
catalyzed by smaller enzymes. Gomez et al. [246] showed with simulations that elongated,
polymeric crowders enhance protein folding more substantially than spherical crowders.

A growing body of research suggests that restricting the macromolecular crowding effects
to purely entropic, excluded volume contributions is overly simplistic [149, 261, 262]. The
crowders present in biological cells, such as, proteins, RNA, etc. (Fig. 2.4), are not inert, and
thus engage in miscellaneous interactions ranging in energy from weak and transient quinary
interactions [263] to stronger electrostatic and specific attractions. Moreover, in reality even
the seemingly inert crowders like Ficoll, Dextran or poly(ethylene glycol) (PEG)/poly(ethylene
oxide) (PEO) are complex chemical entities with various chemical groups which may interact
specifically and nonspecifically (electrostatically, hydrophobically, via hydrogen bonding, etc.)
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with the biomacromolecules. Thus, SPT-like theories have to be then taken with caution, as
describing only the limiting behavior due to entropic interactions.

Additional complexity lies in the fact that in crowded multicomponent system such as cyto-
plasm, its ingredients may phase-separate and form droplets of diffrent composition and physic-
ochemical properties [264–268]. In each of such membraneless microcompartments, the effects
of macromolecular crowding may, in principle, differ.

Still, the strength of purely entropic approach exemplified by SPT lies in the fact that the
part of free energy change described by it is universal, i.e., independent of atomic details, and
the range of predicted effects is rich. For this reason, in the following chapters, we apply it to
gain new insights into the generic phenomena governing reactions upon crowding in the limit of
negligible interactions between crowders and reagents. In Section 6.2, we discuss the activity
change of model conformation-changing enzymes (introduced in Section 5.2) due to crowding.
In Section 6.3, we explore crowding-regulated allosteric cooperativity of divalent binding.

6.2 Conformation-changing enzyme kinetics

6.2.1 Crowding-controlled reaction rate

In Michaelis-Menten kinetic model of enzymatic reaction [225], the reaction rate is propor-
tional to the concentration of an enzyme. However, often only one particular conformation of
an enzyme is catalytically active. For instance, for some conformation-changing enzymes, only
enzyme in certain (open) conformations can bind a substrate and thus act as catalysts (Sec-
tion 5.2). Therefore, the maximum reaction rate is proportional to the concentration of active
enzymes, which in equilibrium is determined by the free energies of all possible conforma-
tions. As discussed in Section 2.4, these free energies depend, among other factors, on the
macromolecular crowding.

For instance, the HIV-1 protease has two mobile flaps that cover its active site. These
flaps need to open to let the substrate in and then close, and, as shown by molecular dynamics
(MD) simulations, the equilibrium of flap opening is affected by macromolecular crowding
[95, 269]. This effect was suggested to be responsible for the observed decrease of the HIV-1
protease activity in crowded solutions [255]. Similarly, glucose-6-phosphate dehydrogenase
exists in three forms: monomeric, dimeric, and tetrameric, but only dimers are catalytically
active. Macromolecular crowders affect its activity in a complex way, e.g., by changing the
populations of these forms [252].

We consider here enzymes with two conformations: open and closed, of which only the
open one is catalytically active. To quantify the changes in the populations of open and closed
states, we relate them to the values of the free energy of opening ∆Fo (Eq. 2.24):

po
1− po

= exp [−β∆Fo] , (6.1)
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where β = 1/kBT , kB is Boltzmann constant, T is temperature, po is fraction of open enzymes,
and 1− po is, correspondingly, the fraction of closed enzymes. The ratio of the fraction of open
enzymes in crowded environment po(φocc) to the fraction of open enzymes in dilution po(0)

gives an estimate of the change in enzyme activity due to crowding k(φocc)/k(0). Assuming
that the only effect of crowding is the population shift, we get:

k(φocc)

k(0)
=
po(φocc)

po(0)
=

exp [−β∆∆Fo]

1− po(0) + po(0) exp [−β∆∆Fo]
, (6.2)

where ∆∆Fo = ∆Fo(φocc) −∆Fo(0). This equation is general and depends only on the pop-
ulation of the open enzymes in dilution po(0) and the free energy change induced by crowding
∆∆Fo, which needs to be calculated in each specific case. We now use SPT to calculate ∆∆Fo

in the case when crowding induces only entropic effects.

6.2.2 Scaled particle theory results

Assuming that all crowders are spherical and using Eq. 2.46 and Eq. 2.28, we express ∆∆Fo

as:

∆∆Fo = kBT
3∑

k=1

hkg
k, (6.3a)

where function g(φocc) is defined in Eq. 2.42, and coefficients hk encode the geometric features
of an enzyme in the open and closed conformations (Section 2.4):

h1 =
3∆H

acr

+
3∆S

4πa2
cr

+
3∆V

4πa3
cr

; (6.3b)

h2 =
9∆H2

2a2
cr

+
9∆V

4πa3
cr

; (6.3c)

h3 =
9∆V

4πa3
cr

. (6.3d)

Here, for a generic variable X , ∆X = Xo −Xc is the difference between its value in the open
and closed state.

Combining Eqs. 6.2 and 6.3 bridges the microscopic characteristics of enzymes with the
macroscopic chemical kinetics measurements. Fitting experimental data to Eq. 6.2 and extract-
ing parameters h1,2,3 and po(0) allows for gaining insight into the changes of enzyme confor-
mations. To do so, at least four experimental datapoints are needed.

Equation 6.3 is general and can be simplified in some cases. For instance, for enzymes that
are spherocylinders of radius a and lengths `o and `c in the open and closed states, respectively,
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Eq. 6.3(b-d) simplify to [12]:

h1 =
3∆`

4acr

(
1 +

2a

acr

+
a2

a2
cr

)
, (6.4a)

h2 =
9a∆`

4a2
cr

(
1 +

a

acr

)
+

9∆`2

32a2
cr

, (6.4b)

h3 =
9a2∆`

4a3
cr

, (6.4c)

where ∆` = `o − `c and ∆`2 = `2
o − `2

c . In this case, the parameters to fit to experimental data
are: a/acr, ∆`/acr and ∆`2/a2

cr.
Note that the activity reduction considered in our simple model is solely due to the enzyme

closing caused by macromolecular crowding with inert crowders. Other effects may be at play
as well, such as hindering of the enzyme’s active site in the open state or change in the reagent
and enzyme diffusion coefficients. We do not consider these effects in this Thesis.

6.2.3 Application to fluctuating-dumbbell model

In Section 5.2, we introduced a fluctuating-dumbbell model of size-changing enzymes, which
we used in Brownian dynamics (BD) simulations to quantify the diffusion of such enzymes
under various crowding conditions (Section 5.3). Here, we investigate how the activity of such
enzymes is affected by macromolecular crowding. Furthermore, to check the validity of the
SPT (Section 6.2.2), we compare its predictions with the results of BD simulations.

To divide enzymes into open and closed, we introduce the following criterion: an enzyme
is considered open if the bead-bead separation ` > (`o + `c)/2, and it is closed otherwise.
In the dilute regime, i.e., for φocc = 0, the fraction of open enzymes depends solely on the
intramolecular potential. In the case of our model, both minima of the potential have the same
depth, thus the difference in the open and closed populations stems purely from the differences
in the entropy of the closed and open states, i.e., ∆Fo = −T∆So.

The entropy of enzyme opening may be estimated using simple geometric arguments. The
number of states corresponding to the open (closed) enzyme is proportional to the surface area
of a sphere of radius `o (`c). Thus, the equilibrium constant of the opening process may be
approximated as:

po
pc
≈
(
`o
`c

)2

. (6.5)

Such an estimate leads to po ≈ 0.84.
Integrating the separation probability density distribution P(`), which is Boltzmann distri-
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bution with the potential U (Eq. 5.1), i.e.:

pc =

∫ (`o+`c)/2

0
`2 exp [−βU (`)] d`∫∞

0
`2 exp [−βU (`)] d`

; (6.6a)

po =

∫∞
(`o+`c)/2

`2 exp [−βU (`)] d`∫∞
0
`2 exp [−βU (`)] d`

. (6.6b)

gives po = 0.83, which is close to our simple estimate given by Eq. 6.5.
We next compared the separation probability density distributions P(`) in infinite dilution

and in crowded mixtures of enzymes and passive spheres (Table 5.2). The latter were obtained
by interpolating the histograms of bead separations from the BD trajectories. Results show that
macromolecular crowding decreases the fraction of open enzymes (Fig. 6.1b). For the largest
φocc used in this study (≈ 18%), Eq. 6.6 yields po = 0.7, which is 84% of the dilute regime
value.

Using Eq. 2.24, we computed the free energies of opening from our BD simulations (Fig. 6.1c).
We compare them with the predictions of SPT, assuming that enzymes are spherocylinders of
radius a = 1 nm and length `c in the closed and `o in the open conformation. Thus, we used the
general formula Eq. 2.44 and applied it to the case of 3 crowder types: open enzymes, closed
enzymes, and passive spheres. The number of open and closed enzymes depends on ∆Fo and
vice versa, so we solved Eq. 2.24 iteratively. The SPT curve predicts that the free energy of
opening crosses 0 at φocc ≈ 25%, which is in the physiological range of concentrations [8].
This means that for φocc ≈ 25%, the enzyme population is divided evenly among open and
closed enzymes.

Using the values of ∆Fo, we computed the relative rate constants of the enzymatic reaction
(Eq. 6.2) from BD simulations and SPT (Fig. 6.1d). Both approaches give similar decrease in
the activity upon macromolecular crowding. The SPT curve gets steeper with increase in φocc.
and for φocc ≈ 30% relative activity drops to ≈ 0.4.

In summary, we observe a reasonable agreement between the SPT and BD results, but the
SPT slightly overestimates the change in the opening free energy ∆Fo and rate constant k/k0.
One reason is that in the SPT approach we approximated the dumbbells with spherocylinders,
which are slightly larger. Another reason is that the SPT assumes that the excluded volumes due
to individual crowders do not overlap (Eq. 2.21), which inevitably overestimates the crowding
effect.

More experimental studies are needed to verify whether the assumptions of our simple
model correspond to the biological reality of enzymes with their highly complex potential en-
ergy surfaces. The data available so far is insufficient to carry out the fitting to SPT [252, 255].
Apart from that, the paper on HIV-1 protease by Maximova et al. [255] for high φocc reports
deviation from the Michaelis-Menten kinetics, which complicates matters even more.
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Figure 6.1: Fluctuating-dumbbell enzyme model under macromolecular crowding. (a)
Snapshots of a single conformation-changing enzyme model and BD systems with the increas-
ing concentration of passive spheres, while keeping the number of enzymes fixed. (b) Proba-
bility density distribution of the bead-bead separation in systems with various occupied volume
fraction φocc. (c) Free energy of model enzyme opening as a function of the occupied volume
fraction φocc computed from BD simulations based on the fraction of open enzymes. BD results
(symbols) are compared with the SPT prediction (line). (d) Relative enzymatic reaction rate
k/k0 as a function of the occupied volume fraction φocc from BD simulations and SPT. The
rates were computed with Eq. 6.2 based on the fraction of open enzymes in BD simulations.
Figure adapted from ref. [226].

6.3 Binding of divalent molecules

Some biochemical reactions, such as binding oxygen by hemoglobin [270, 271], antigen-antibody
binding [272], and condensation of intrinsically disordered proteins [273, 274], consist of mul-
tiple binding steps and are referred to as multivalent binding [275–277]. There are also attempts
to artificially bind natively monovalent active sites by polymer linkers to turn them into multi-
valent macromolecules [66, 278, 279]. Because these reactions are multistep, the influence of
crowding on them can be more difficult to predict.

To study such reactions, we consider the minimal example: a divalent binding reaction in a
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form of binding of two identical monovalent molecules B to a divalent AA molecule:

AA + B
K1−−⇀↽−− AA ·B, (6.7a)

AA ·B + B
K2−−⇀↽−− AA ·B2, (6.7b)

where K1 and K2 are the apparent equilibrium constants of the individual binding events. If the
above binding reaction happens in an environment filled with chemically inert crowders with
the volume fraction occupied by crowders φocc, and assuming very small concentrations of the
reagents. Using Eq. 2.27, we can write:

K1 (φocc) =
[AA ·B]

[AA][B]
= K1 (0)

γAAγB

γAA ·B
, (6.8a)

K2 (φocc) =
[AA ·B2]

[AA ·B][B]
= K2 (0)

γAA ·BγB

γAA ·B2

, (6.8b)

K (φocc) =
[AA ·B2]

[AA][B]2
= K (0)

γAAγB
2

γAA ·B2

, (6.8c)

where γi and [i] are the activity coefficient and the equilibrium concentration of i-th species,
respectively (Section 2.4).

6.3.1 Binding cooperativity

Some multivalent binding reactions proceed in such a way, that each consecutive binding step
is promoted by the previous ones. Such reactions are called cooperative [275, 276, 280].
Thermodynamically, it means that the equilibrium constants fulfill the following inequality:
K1 < K2 < .... As a result, for a strongly cooperative system at equilibrium, the intermediate
complexes are scarce, and the population of macromolecules is either completely unbound or
completely bound. Transition between these two states due to changes in some external param-
eters, e.g., temperature, pressure, salt or ligand concentration, is sharp. Thus, the cooperative
systems exhibit “all-or-nothing” or “on-off” behavior.

One distinguishes two mechanisms of cooperativity [275, 276]:

1. Allosteric – binding of a monovalent ligand to one site enhances the affinity of a separate
ligand molecule for binding at another site.

2. Chelate – binding of a multivalent ligand to one site spatially constrains the ligand’s
remaining sites to the vicinity of their respective partner sites.

In contrast to allosteric cooperativity, chelate cooperativity depends on the ligand concentra-
tion, i.e., for very high concentrations of the ligands, the concentration of completely bound
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complexes drops, rendering the system “off-on-off” rather than “on-off” [276].
On the one hand, the mere presence of inert crowders may shift the equilibrium constants in

the direction of more compact entities. On the other hand, ligand binding may expand [281, 282]
or contract [222, 283–291] the multivalent macromolecule, depending on the specific reaction.
Thus, the change in the AA size upon consecutive binding events may affect and even cause the
binding cooperativity.

For the reaction defined in Eq. 6.7, the cooperativety may be quantified with the cooperativ-
ity parameter α defined as [275]:

α =
K2

K1

=
γAA ·B2

γAAγAA ·B2

α0, (6.9)

where α0 is the cooperativity parameter with no crowders (φocc = 0). We speak of cooperative
binding when α > 1, anticooperative binding when α < 1, and noncooperative binding when
α = 1. Note that α can be viewed as the equilibrium constant of the following reaction:

2 AA ·B −−⇀↽−− AA ·B2 + AA. (6.10)

Note also that the cooperativity parameter does not depend on the activity coefficient γB of
species B, as this specie does not appear explicitly in Eq. 6.10.

Computing α is beyond the scope of this Thesis. Instead, we focus on the ratio α/α0,
which quantifies the change of cooperativity parameter induced by macromolecular crowding.
In Section 6.3.2, we discuss the results obtained with the SPT for simplistic, spherical mod-
els of macromolecules (Section 2.4). In Section 6.3.3, we explore the results for bead chains
investigated using BD simulations and Monte Carlo (MC) integration (Section 3.3).

6.3.2 Scaled particle theory

For simplicity, we assume that all crowders are spheres of the same radius acr and AA, AA ·B,
AA ·B2 are spheres of radii a0, a1 = a0 + δa1, and a2 = a0 + δa1 + δa2, respectively. In
crowded environments, using Eqs. 2.47 and 6.9, we obtain the expression for the cooperativity
parameter:

ln
α

α0

= 2 ln γAA ·B − ln γAA ·B2 − ln γAA

= −g
(

3∆a

acr

+
3∆a2

a2
cr

+
∆a3

a3
cr

)
− g2

2

(
9∆a2

a2
cr

+
6∆a3

a3
cr

)
− 3g3 ∆a3

a3
cr

; (6.11a)

where:

∆X = XAA ·B2 +XAA − 2XAA ·B (6.11b)
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with (X ∈ {a, a2, a3}).
The ratio α/α0 depends on four parameters: a0/acr, δa1/a0, δa2/a0 and φocc. Figure 6.2

shows two-dimensional color maps of log10 α/α0 obtained with Eq. 6.11 for φocc = 10 and
40%. In Fig. 6.2a,b crowders are assumed to have radius acr = a0. Both maps are similar
and may be divided into three distinct regions. The diagonal region (δa1 ≈ δa2) represents
a monotonic change in the size of the macromolecule, i.e., either contraction or expansion in
both steps of the binding. In this part of the plot, the cooperativity remains virtually unchanged.
The top-left region represents a contraction-expansion behavior – AA contracts upon binding a
first B and then expands after binding a second one. In this case, the cooperativity decreases.
Finally, the bottom-right region represents an expansion-contraction behavior – AA expands
upon binding first B and then contracts after binding a second one. Here, the model predicts
an increase in cooperativity. The magnitude of the predicted changes grows with the occupied
volume fraction φocc. For physiologically-relevant φocc = 40%. the SPT predicts cooperativity
change of up to a few orders of magnitude for size changes δa1 = −δa2 = ±0.2a0.

Figure 6.2c,d and Fig. 6.2e,f show the results for crowders smaller and larger than the
reagents, respectively. The magnitude of the predicted changes increases drastically with the
increase in the reagent-to-crowder size ratio a0/acr. This means that α becomes more sensitive
to the macromolecular crowding when the reactive macromolecules are larger than inert crow-
ders. When the crowders are larger than the reagents, i.e., a0/acr = 0.5, even for φocc as high as
40%, the cooperativity changes less than two orders of magnitude for δa1 = −δa2 = ±0.2a0.
For a0/acr = 2, the change exceeds two orders of magnitude even for φocc = 5%.

6.3.3 Polymer-based models

Polymer bead chains are simplistic models of macromolecules, in which end-to-end connections
may represent folding of protein or single-stranded DNA [292]. We used such simple models to
mimick the expansion-contraction behavior, which is predicted by SPT to yield large crowding-
induced increase in cooperativity (Section 6.3.2). We modeled AA, AA ·B and AA ·B2 as linear
or cyclic polymer chains of n beads, with 1 ≤ n ≤ 32 (3 ≤ n ≤ 32 for rings). Cyclic chains are
more compact, and thus transformation from linear to cyclic structures mimicks the contraction
behavior, and vice versa: transformation from cyclic to linear mimicks expansion.

6.3.3.1 Details of calculations

To calculate the cooperativity parameters, we needed the activity coefficients γi of bead chains
and rings in various crowded environments. To obtain them, we combined three approaches:

1. BD simulations (Section 3.1), from which we obtain representative samples of bead chain
conformation distribution,

2. BD simulations, from which we obtain configurations of crowders,
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Figure 6.2: Cooperativity of divalent binding from SPT. Heat maps of decimal logarithm
of α/α0 plotted in the plane of δa1/a0 and δa2/a0 for: (a,b) crowders and reagents of equal
size (a0/acr = 1), (c,d) crowders smaller than reagents (a0/acr = 2), (e,f) crowders larger than
reagents (a0/acr = 0.5), and occupied volume fraction (a,c,e) φocc = 10%; (b,d,f) φocc = 40%.

3. Integration of Eq. 2.36 which we perform with MC method (Eq. 3.17), from which we
obtain the activity coefficient of a given bead chain in a given crowded environment.

To gather a representative sample of the polymer chains’ Boltzmann distribution, we per-
formed BD simulations with a custom pyBrown software (Appendix D.2). We set the bead ra-
dius to abead = 1 nm and connected the neighbouring beads with a harmonic potential of force
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φocc = 5.5%,
abead/acr ≈ 0.2
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φocc = 42.6%,
E. coli cytoplasm

Figure 6.3: Crowded systems used in MC calculations of activity coefficients. The linear
chain for n = 32 is presented to show its size relative to the size of crowders and simulation
boxes.

constant kr = 1000 kcal mol−1 nm−2 and equilibrium distance req = 2abead. Only bound beads
could overlap with each other; unbound beads interact via a hard-sphere potential (Eq. A.6). The
positions of beads were propagated using the forward Euler method (Eq. A.1). We neglected
hydrodynamic interactions between beads, as they do not affect the equilibrium distribution
[75]. Thus, the diffusion matrix D was diagonal, with entries given by the Stokes-Sutherland-
Einstein (SSE) relation (Eq. 2.10). The hard sphere potential was taken into account by repeat-
ing steps which lead to an overlap of unconnected beads.

We placed the bead chains in a cubic box of 75 nm × 75 nm × 75 nm and applied periodic
boundary conditions in all three directions. Simulations lasted for 20 µs. The temperature T
was set to 293.15 K, and dynamic viscosity to η = 1.005 cP.

In separate BD simulations, chemically inert crowders were modeled as hard spheres of
acr = 5.1 nm, corresponding to Ficoll70, a typical artificial crowder. We consider systems
with occupied volume fraction φocc = 5.5, 11.1, 22.1 and 44.2%. In addition, we considered
heterogeneous Escherichia coli cytoplasm model of φocc = 42.6%, taken from ref. [36]. A few
snapshots from BD simulations of crowders are shown in Fig. 6.3. To gather configurations of
crowders, we used the results from Section 4.2, with additional results for system of φocc =

42.6% and cytoplasm model obtained with the same BD setup.
We performed MC integration with a custom ExVol software (Appendix D.4). In MC in-

sertions, each complex i was represented by 10000 Boltzmann-distributed conformations and
inserted into 10000 (10 for φocc = 44.2%) different configurations of the crowded box. 5000

insertions were performed for each of 10000 chain-box pairs. Uncertainties in γ−1
i and φex,i

were computed based on these 10000 independent values as the standard error of the mean, and
then propagated into uncertainties of the cooperativity parameters α/α0.

6.3.3.2 Gyration radii

To connect the polymer bead simulations with the SPT results, we first computed the gyration
radii Rg of various bead chains. The gyration radii of the analyzed structures were obtained
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from BD trajectories using the following formula:

Rg =

√√√√ 1

n

n∑
j=1

(rj − 〈r〉)T (rj − 〈r〉) , (6.12)

where n is a number of beads that make up the chain, ri is a position of i-th bead, and 〈r〉 is an
average of ri. We see that the larger the chain length n, the larger the contraction of the cyclic
molecule as compared to the linear one of the similar size (Fig. 6.4). The gyration radii of the
linear chains are in reasonable agreement with the results of three-dimensional self-avoiding
random walk on a BCC lattice [293, 294]:

Rg =
√

0.186r2
eq(n− 1)6/5, (6.13)

where req is a bond length.

6.3.3.3 Activity coefficients

The volumes excluded to the bead chains φex,i and corresponding activity coefficients γi com-
puted with Eq. 3.17 are shown in Fig. 6.5. Both φex,i and γi increase with φocc and chain length
n and are larger for the linear chain than for the ring chain of the same length, in accordance
with the behavior of gyration radii (Fig. 6.4). The slope of φex,i decreases, reflecting the fact
that the volumes excluded by individual crowders start to overlap. Activity coefficients γi in-
crease exponentially with the chain length. Interestingly, we observe a crossing of φex,i and γi
curves as functions of the AA length for homegeneous system with φocc = 44.2% and hetero-
geneous cytoplasm model with similar φocc. Shorter chains are excluded more strongly from
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the homogeneous systems, whereas longer – from the heterogeneous systems.

6.3.3.4 Cooperativity

Chains and rings of various sizes n can be attributed to AA, AA ·B and AA ·B2 reagents
(Eq. 6.7). We consider two models:

1. Model 1: AA is an n-bead chain, AA ·B is an n+ 1-bead chain, and AA ·B2 is an n+ 2-
bead ring, that is AA expands upon binding a first B and contracts upon binding a second
B.

2. Model 2: AA is an n-bead ring, AA ·B is an n + 1-bead chain, and AA ·B2 is an n + 2-
bead ring, that is AA unfolds upon binding a first B and folds back into a ring when
binding a second B.

The resulting cooperativity parameters are shown in Figs. 6.6 and 6.7. We observe the increase
of α/α0 with the increase of the AA length, reflecting the trend of the gyration radius difference
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Figure 6.6: Cooperativity for n-chain:n+ 1-chain:n+ 2-ring model. (a) Bead-chain models
of macromolecules involved in the divalent binding reaction. Example AA (AA ·B) consist of
6 (7) identical spherical beads of radius 1 nm. The final product AA ·B2 is an 8-bead ring. Gy-
ration radii Rg of the respective polymers are provided below their structures. (b) Dependence
of cooperativity parameter α/α0 on the number of beads n in the chain. (c) Dependence of
cooperativity parameter α/α0 on occupied volume fraction φocc.

between the linear and cyclic chains (Fig. 6.4). Yet, the increase of α/α0 for a given crowder
size is not as high as predicted by the SPT for spherical models (Fig. 6.2). For a given n,
the cooperativity increases with the occupied volume fraction φocc. The increase in Model 2
(Fig. 6.7) is more substantial than in Model 1 (Fig. 6.6), owing to smaller, cyclic AA in Model
2.

With the values of γi = 1/(1 − φex,i) for linear and cyclic chains, one can construct other
models, in addition to the two discussed in this section. In Table 6.1, we present the excluded
volumes for all studied polymer chains.
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Figure 6.8: Crowder-size effect on the crowding-regulated cooperativity from MC integra-
tion. (a) Bead-chain models of an example macromolecule involved in the divalent binding
reaction upscaled and downscaled two times. (b) Various symbols denote the cooperativity pa-
rameter α/α0 for Model 1 (circle) and Model 2 (triangle) for n = 10. Lines on the plot serve
only as a guide to the eye.

6.3.3.5 Crowder-size effect

To study how the crowder-size affects the cooperativity, we used the conformations of bead
chains participating in the binding reaction for n = 10. We sampled them from exactly the
same BD trajectories as above, but we rescaled their sizes prior to each insertion. The results
for upscaling and downscaling 2 times are shown in Fig. 6.8. Similarly as predicted by the SPT
(Section 6.3.2), the cooperativity changes are higher in systems with small crowders in both
considered reaction models. Moreover, Model 2 is more sensitive to the change of crowder size
than model 1.

6.3.4 Concluding remarks

Our SPT and MC results show that the change in cooperativity of divalent binding reactions
depends on conformational changes at each binding step. If the size of the AA divalent molecule
increases upon binding a first B and decreases upon binding a second B, then the cooperativity
increases. Moreover, crowding can induce the cooperativity of originally noncooperative or

101



10−3 10−2 10−1 100 101 102

K1(0)[B]T

0

0.5

1

[A
A
·B

]/
[A

A
] T

b

10−3 10−2 10−1 100 101 102

K1(0)[B]T

0

0.5

1
[A

A
·B

2
]/

[A
A

] T

a

φocc = 0 %

20 %

40 %

Figure 6.9: Effect of the macromolecular crowding on the equilibrium of divalent binding
reactions. Dependence of (a) [AA ·B2] and (b) [AA ·B] on the concentration of B at constant
[B]T/[AA]T = 10 for occupied volume fraction φocc = 0, 20, and 40%. δa1/a0 = −δa2/a0 =
0.1 and a0/acr = 1.18. The cooperativity parameter α/α0 was computed using SPT.

anticooperative reactions.
Although neither the SPT nor MC method used in this section accounts for the enthalpic

component of the crowder-reagent interactions, they can still capture noteworthy and generic
physical phenomena in biological systems. For instance, Grimaldo et al. [295] showed ex-
perimentally that the diffusion of small proteins is slowed down less in heterogeneously than
in homogeneously crowded systems, and, vice versa, the diffusion of large proteins is slowed
down more in systems with polydisperse crowders. We observe a similar behavior of the vol-
ume excluded to the bead chains φex,i. Shorter chains have larger φex,i in homogeneous systems
and longer – in heterogeneous ones (Fig. 6.5 and Table 6.1). This behavior seems important in
the context of highly heterogeneous, intracellular environments.

The equilibria of the divalent binding reactions were extensively studied by Janssen et al.

[277]. The authors developed an analytical model describing their dependence on equilibrium
constants K1 and K2 and the total concentrations [AA]T = [AA] + [AA ·B] + [AA ·B2] and
[B]T = [B] + [AA ·B] + 2[AA ·B2]. Our results discussed in Sections 6.3.2 and 6.3.3 enable
one to include macromolecular crowding as an additional parameter in that model. To illustrate
its role, we calculated the equilibrium concentrations in the process of diluting AA and B at
constant [B]T/[AA]T , accounting for crowding effects via SPT (Eqs. 2.47 and 6.8), assuming
that crowders and reagents are spheres, δa1/a0 = −δa2/a0 = 0.1, and a0/acr = 1.18. The
curve denoting AA ·B2 concentration gets steeper with increasing the occupied volume fraction
φocc, which is a hallmark of cooperativity (Fig. 6.9a). Furthermore, the bell-shaped maximum
of [AA ·B] gradually vanishes with increasing φocc (Fig. 6.9b).

In an influential review paper, Whitty [280] concluded that “cooperativity is a key organiz-
ing principle in chemistry and biology without which the complex molecular systems required
for life could not function”. Thus, understanding the processes that lead to gaining or losing that
feature in biological environments is vital to get physical insight into the “on-off”-behaving sys-
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tems in living organisms. The results presented in this Section are a small step in that direction,
which, we hope, motivate further theoretical and experimental work.
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Chapter 7

Conclusions

So [easy to understand] are all truths, once they are discovered; the point is in

being able to discover them.

Galileo Galilei

The goal of this Thesis was to investigate the generic effects of macromolecular crowding
on diffusion, chemical equilibria, and reaction rates. To do that, we applied relatively simple,
coarse-grained models and approaches such as Brownian dynamics (BD), Stokesian dynamics
(SD), and scaled particle theory (SPT).

On the one hand, as pointed out by Elcock [262], we are reaching the limit of what simple
theories can produce in the field of cell biophysics. These theories usually provide intuitions
that qualitatively agree with the experimental observations, but quantitative agreement is out
of their reach. Sometimes there is even no qualitative agreement. As we enter the exascale
computing era, we are tempted to focus on large-scale multimillion-atom simulations and leave
the “spherical cows” behind.

On the other hand, as shown in this Thesis, there are still many phenomena that can be
approached with simple models, keeping the number of particles and parameters involved rel-
atively small and focusing on generic effects. Below, I present a brief summary of the main
results of this Thesis.

Simulations with only far-field hydrodynamic interactions overestimate the diffusion
coefficients in crowded environments. Hydrodynamic interactions, which arise due to fluid
flow induced by moving particles, are considered one of the main factors determining diffusion
coefficients in crowded environments [36]. It was previously claimed that the standard approach
of considering only far-field (long-range) hydrodynamic interactions breaks down in crowded
environments, where the average distance between macromolecules becomes comparable to
their sizes [10, 77]. However, the quantitative description of that breakdown was missing. Using
coarse-grained BD and SD simulations, we showed that such an approximation significantly
overestimates the diffusion coefficients in crowded hard-sphere systems to such an extent that
not accounting for hydrodynamic interactions at all gives better results (Fig. 4.4). However, the
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far-field hydrodynamic interactions are essential to correctly describe the diffusion of structures
composed of many beads connected with harmonic bonds (Fig. 4.7). Although it is well known
how to systematically correct for near-field hydrodynamic interactions of hard spheres, it is
not clear whether this computationally demanding procedure will systematically improve the
description of biomacromolecules that, in fact, are neither entirely hard nor spherical.

Elongated crowders slow down diffusion more substantially than spherical ones. Al-
though the dependence of diffusion on the occupied volume in systems of spherical particles is
well understood (Sections 4.1.3 and 4.1.4), relatively little is known about this behavior in the
case of nonspherical crowding agents. Since the shapes of the macromolecules crowding living
cells are diverse, for instance, triangular (aspartate carbamoyltransferase), V-shaped (tRNA),
and elongated (tyrosyl-tRNA synthetase), the knowledge of how the crowder shape affects
diffusion is of great importance. Using BD simulations, we showed that elongated crowders
hinder the diffusion of spherical particles more effectively than spherical crowders at the same
occupied volume (Fig. 4.10), which qualitatively agrees with the fluorescence correlation spec-
troscopy (FCS) results (Fig. 4.5). However, the effect observed in the FCS experiment is much
stronger. Thus, we hypothesized that some hitherto unknown attractive interactions between
the tracer used experimentally (streptavidin) and dsDNA crowder might account for these dif-
ferences (Section 4.4). In contrast to artificial crowders, protein crowders engage in a multitude
of interactions and thus hinder diffusion to a larger extent (Section 4.1.6), and it may apply to
nucleic acid crowders as well. In the future, a more comprehensive analysis, e.g., varying radius
and aspect ratio of elongated crowders and the treatment of near-field hydrodynamic interac-
tions (here only far-field), may be crucial to develop a complete physical picture of the shape
effects in crowded systems.

Soft crowders generally slow down diffusion less effectively, but not for elongated trac-
ers. Not all macromolecules are well described by hard-sphere models. For instance, Dextran
particles can allegedly entangle their chains and partially overlap at a certain energy cost [187].
To investigate the consequences of this fact, we performed BD simulations of the mixtures com-
posed of macromolecules of various softness (Section 4.5). We modeled softness with a more
expanded and less steep potential and singled out its effect by deliberately constructing the soft
particles to effectively occupy the same volume as the hard crowders. In mixtures of hard and
soft spherical particles of various compositions, the latter diffuse faster and hinder diffusion to
a lesser extent (Fig. 4.15), which coincides with the soft crowders excluding less volume. Sur-
prisingly, however, we found an opposite relation for dsDNA-like elongated bead-chain tracers
in the same hard-soft mixtures, i.e., such tracers diffuse faster in hard crowders than in soft ones
(Fig. 4.17). We related this behavior to the volume excluded to them, as it is higher in soft
than in hard particle systems. Artificial crowders, frequently used in in vitro experiments, are
polymers that can interact more softly than biomacromolecules. In the future, understanding
these differences even better can help avoid prematurely translating the results of experiments
with artificial crowders into intracellular reality.
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Activity-induced enhancement of enzyme diffusion depends on the type of crowders.
Enzyme diffusion enhancement is an increase in the diffusion coefficient of an enzyme actively
engaged in a catalytic turnover. Although the very existence of this phenomenon is still debated
[200, 201, 216], understanding its potential origin and behavior is important as it may explain
glassification of the cytoplasm under the influence of halting metabolic activity [20, 21]. Advo-
cating for or against its existence was beyond the scope of this Thesis. Instead, we considered
enzymes that decrease their size upon binding a substrate, thus naturally showing enhanced
diffusion, which is consistent with experiments [203, 222]. The enhancement we observed
in crowded systems differed from the dilute regime and depended on the type of a crowder
(Fig. 5.3). It is larger in magnitude when crowding is due to enzymes and weaker if it is due
to passive crowders. Moreover, we also observed diffusion enhancement of passive spheres in
mixtures with active enzymes, albeit only for high enzyme concentrations (Fig. 5.4). To our
knowledge, this is the first study of this phenomenon taking into account crowding. Since the
biological environment in which enzymes operate is crowded, more research in that direction is
needed.

H-cell measurements can test the existence of enzyme diffusion enhancement, but only
if they are highly accurate. As mentioned above, a consensus is not yet reached on whether
enzyme diffusion enhancement exists, owing to various experimental methods producing in-
consistent results (Table 5.1). H-cell microfluidic experiments allow for accurate and robust
measurement of protein diffusion coefficient [228] and thus might help resolve these debates.
We performed the rational design of H-cell diffusion enhancement measurements for three en-
zymes (Fig. 5.7). In each case, we have found that very accurate enzyme concentration mea-
surements are needed to capture the change in diffusion coefficient (Fig. 5.9). Although this
accuracy requirement prevented us from performing such experiments, in the future improved
H-cell measurements can be used for that purpose based on our optimization results.

Chemical kinetics measurements can help obtain information on the conformation
changes of some enzymes during a reaction. For some enzymes, such as an HIV-1 pro-
tease, the reaction rate depends on the probability that they adopt a particular, catalytically
active conformation [95, 269]. This probability, and therefore the reaction rate, can vary sig-
nificantly between the in vitro and in vivo conditions, particularly but not exclusively due to
macromolecular crowding. We quantified the contribution from crowding for model enzymes
using BD simulations and SPT calculations based on how crowding affects the conformation
of an enzyme. Our results show that macroscopic chemical kinetics measurements in crowded
systems encode the information about the microscopic conformational states of such enzymes
(Section 6.2). This information may be decoded by fitting the theoretical SPT curve (Eq. 6.2) to
the experimental data. However, the literature data was insufficient to perform such an analysis
in this Thesis [255]. Thus, it remains to be seen how accurate this approach is and whether
reducing the crowding effects merely to changing the fraction of active enzymes can reliably
describe the enzyme kinetics under crowding. This is a special case of a broader question un-
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derlying “CELLestial mechanics” (Section 1.1), namely whether it is possible to predict in vivo

rate constants using only the results obtained in vitro.
Macromolecular crowding can cause multivalent binding reactions to become coop-

erative. Some biologically relevant chemical reactions, such as the binding of oxygen to
hemoglobin and antibody-antigen binding, involve molecules with more than one binding site,
which are called multivalent. These reactions may exhibit cooperativity, i.e., each subsequent
binding step may have a larger equilibrium constant [275]. Cooperativity is considered essen-
tial to the functioning of life [280], but little is known about its interplay with macromolecular
crowding. To bridge that gap, we investigated the equilibria of divalent binding reactions in
crowded systems using SPT calculations (Fig. 6.2). We demonstrated that crowding might
even induce cooperativity in otherwise noncooperative systems and vice versa. The direction
of the shift depends on the details of the changes in the macromolecule’s shape and size upon
consecutive binding events. In particular, expansion upon the first and contraction upon the
second binding step leads to an increased cooperativity. Moreover, we explored this effect in
reactions of linear and cyclic bead chains, which are simplistic models of unfolded and folded
macromolecular structures [292], obtaining similar results (Figs. 6.6 and 6.7). We hope these
theoretical results motivate experimentalists to investigate such crowding-regulated multivalent
binding both in vitro and in vivo.

Developed open-source software. In the course of this research, I developed pyBrown

software (Appendix D.2) for BD and SD (F-version) simulations. Unlike existing alternatives,
such as BD_BOX (Appendix D.1) and Brownmove [296], it accounts for near-field hydrodynamic
interactions via improved lubrication correction (Section 3.2.1). In addition, pyBrown includes
functionalities not covered in this Thesis, such as calculating reaction rate constants with the
Northrup-Allison-McCammon (NAM) algorithm algorithm [297] or user-defined chemical in-
teractions and reactions between particles. I also developed ExVol software (Appendix D.4)
for computing excluded volume by Monte Carlo (MC) integration (Section 3.3). This software
is released under GPL-3.0 license and is freely available at https://tskora.github.io/
pyBrown/ and https://tskora.github.io/ExVol/, respectively.
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Appendix A

Brownian dynamics implementation
details

A.1 Propagation schemes

A.1.1 Forward Euler scheme

Forward Euler method leads to the following propagation scheme for Eq. 3.4:

r(t+ ∆t) = r(t) +
1

kBT
DF∆t+

√
2∆tBX, (A.1)

where r is vector of positions, t is time, ∆t is propagation step, kB is Boltzmann constant, T is
temperature, F is force vector,X is standard white-noise vector,D is diffusion matrix, andB
is a Choleski factor ofD, i.e.:

D = BTB. (A.2)

The factor of
√

∆t originates from the fact that the variance of the integral of white noise is
equal to the length of the integration range, here ∆t. Similarly, a sum of N normally distributed
variables with unit variance has a variance equal to N .

A.1.2 Ermak-McCammon scheme

The propagation scheme for Eq. 3.4 accounting for hydrodynamic interactions (Section 3.2)
derived by Ermak & McCammon [75] reads:

r(t+ ∆t) = r(t) + (∇TD)T∆t+
1

kBT
DF∆t+

√
2∆tBX, (A.3)

where ∇ denotes a vector of partial derivative operators over position r. Ermak & McCam-
mon [75] also performed the first simulations using that scheme and coined the term Brownian
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dynamics (BD) for them.
The diffusion matrix in Oseen (Eq. 3.5) and Rotne-Prager-Yamakawa (RPY) (Eqs. 3.6

and 3.7) approximations is sourceless, i.e., ∇TD = 0T . Thus, in these approximations, the
Ermak-McCammon propagation scheme (Eq. A.3) simplifies to Eq. A.1.

A.1.3 Iniesta-Garcia de la Torre scheme

Iniesta & García de la Torre [184] proposed a second order BD propagation scheme that divides
the propagation step into two substeps: predictor and corrector. The scheme reads:

r(t+ ∆t) = r(t) +
1

2

∆t

kBT

[
D(t)F (t) +D

(
t+

1

2
∆t

)
F

(
t+

1

2
∆t

)]
+√

∆t

[
D (t) +D

(
t+

1

2
∆t

)]
X, (A.4)

where D and F for t + 1
2
∆t are computed using the Ermak-McCammon propagation scheme,

and square root of a matrix is defined by Choleski decomposition (Eq. A.2). The purpose of
such division is to better account for the changes in F andD along a single propagation step.

A.1.4 Midpoint scheme

The lubrication-corrected diffusion matrix of Stokesian dynamics (SD) (Eq. 3.11) is no longer
sourceless, and the divergence term in Eq. A.3 cannot be neglected. A possible way to avoid
the explicit differentiation of the diffusion matrix, which would be computationally exhaustive,
is to use a midpoint propagation scheme [36]. In the midpoint algorithm, initially, beads are
translated only by a 1/m fraction of a precalculated translation vector. Then, the diffusion
matrix D(t + ∆t/m) is calculated at that point, and the remaining part of the translation is
performed (with forces F (t) and diffusion tensor D(t)) but with an additional drift term. The
overall scheme reads:

r(t+ ∆t) = r(t) +
∆t

kBT
D(t)F (t) +

√
2∆tB(t)X+

m

2

[
∆t

kBT

(
D

(
t+

∆t

m

)
−D(t)

)
F (t) +

√
2∆t

(
D

(
t+

∆t

m

)(
B(t)T

)−1 −B(t)

)
X

]
.

(A.5)

A.2 Interactions

Apart from the hydrodynamic interactions, BD simulations account for regular interactions as
well. Force F appearing in the BD propagation schemes (Eqs. A.1 and A.3–A.5) is defined
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as a gradient of interaction potential energy V (r). Below, the interactions that we used in the
research described in this Thesis are introduced.

A.2.1 Hard-sphere potential

The simplest interaction potential that we use in our studies is the hard-sphere potential:

VHS(rij)

kBT
=

0, for rij > ai + aj;

∞, else .
(A.6)

where rij is distance between i-th and j-th particle of hydrodynamic radii ai and aj , respectively.
Hard-sphere potential is included in BD and SD simulations simply by not allowing particle
overlaps; if two or more particles overlap, the simulation step is withdrawn and repeated by
drawing new random displacements.

A.2.2 Short-range repulsive potential

Sometimes repeating steps leading to overlaps can cause substantial computational overhead.
To avoid this, one uses short-range repulsive continuous potentials approximating the hard-
sphere potential. For two large spheres composed of small particles interacting with standard
Weeks-Chandler-Andersen (WCA) potential – repulsive component of the Lennard-Jones (LJ)
potential – with energy εLJ, the total potential is an integral of the WCA potential over the
volumes of the two spheres. The polynomial expression for it was derived by Henderson et al.

[178] and for small separations reads [36]:

Vrep (rij) =
64εLJπ

2

315

(
aiaj
ai + aj

)
σ6

[rij − (ai + aj)]
7 , (A.7)

where σ is a radius of the small WCA-interacting particle.

A.2.3 Attractive potential

Similar integration for the attractive part of the LJ interaction was performed by Hamaker [300].
The resulting potential reads:

Vattr (rij) = −4εLJπ
2

3

[
aiaj

r2
ij − (ai + aj)

2 +
aiaj

r2
ij − (ai − aj)2 +

1

2
ln

(
r2
ij − (ai + aj)

2

r2
ij − (ai − aj)2

)]
.

(A.8)

Note that to fit the small particles interactiong with WCA or LJ potential below the macro-
molecule’s surface at radius ai, the radii used in the Eqs. A.7 and A.8 must be reduced by σ,
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i.e.:

ai → ai − σ. (A.9)

A.2.4 Roughness correction

Eqs. A.7 and A.8 are correct, provided the particles are perfect spheres with ideally smooth
surfaces. However, this is often not the case, and the roughness of their surfaces significantly
decreases the magnitude of interactions [301, 302]. It may be taken into account by introducing
a multiplicative roughness correction [36]:

A =
rij − (ai + aj)

rij − (ai + aj) + 0.5 (hi + hj)
, (A.10)

where hi and hj are the roughnesses of the macromolecules.

A.2.5 Electrostatic potential

The electrostatic interactions between macromolecules are described by Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory of screened electrostatics in electrolytes:

Velec (rij) =
ΘiΘje

2

4πε0ε (1 + κai) (1 + κaj)

exp [−κ (rij − ai − aj)]
rij

, (A.11)

where ε is relative dielectric constant of a fluid, κ is inverse of the Debye length, ε0 is the
vacuum permittivity, e is the proton charge, and Θi is molecular charge in elementary charge
units.

A.2.6 Harmonic bond potential

The bonded potentials act only between beads connected with bonds. Harmonic bond potential
is:

Vbond (rij) =
1

2
kr (rij − rij,0)2 , (A.12)

where kr is the Hooke constant describing the stiffness of the bond, and rij,0 is an equilibrium
bond length.

A.2.7 Harmonic angle potential

The harmonic angle potential is:

Vangle (αijk) =
1

2
kα (αijk − αijk,0)2 , (A.13)
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where kα is an angle force constant and αijk,0 is the equilibrium angle value.

A.3 Trajectory analysis

A.3.1 Translational diffusion

The trajectories from BD and SD simulations encode translational diffusion coefficients that
may be obtained from time-averaged mean squared displacement (TAMSD), computed by av-
eraging squared displacements not only over the separate trajectories, but also by sliding an
observation window along the trajectories:

TAMSD(m∆t) =

1

Ntraj

Ntraj∑
i=1

1

Nsteps −m

Nsteps−m−1∑
k=0

{ri [(k +m)∆t]− ri [k∆t]}T{ri [(k +m)∆t]− ri [k∆t]},

(A.14)

where ∆t is a window length, Ntraj is the number of trajectories, and Nsteps is the number
of steps in a trajectory. For nonergodic systems, the diffusion coefficient is obtained from
ensemble-averaged-only mean squared displacement (MSD):

MSD(m∆t) =
1

Ntraj

Ntraj∑
i=1

{ri [m∆t]− ri [0]}T{ri [m∆t]− ri [0]}. (A.15)

Then, the time-dependent apparent translational diffusion coefficient is:

D(t) =
TAMSD(t)

6t
; (A.16a)

D(t) =
MSD(t)

6t
. (A.16b)

Throughout this Thesis, for both MSD and TAMSD, we used a custom analysis software
pyBrown-tools (Appendix D.3).

A.3.2 Rotational diffusion

The trajectories of nonspherical particles encode also rotational diffusion coefficients that may
be obtained from orientation autocorrelation (OA) [185, 303]:

OA = 〈`(t)T`(0)〉, (A.17)
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where ` is the orientation vector. OA is computed by averaging not only over the separate
trajectories, but also by sliding an observation window along the trajectories

OA(m∆t) =
1

Ntraj

Ntraj∑
i=1

1

Nsteps −m

Nsteps−m−1∑
k=0

`i ((k +m) ∆t) · `i (k∆t) . (A.18)

OA is an exponentially decaying function of time, with the rate constant related to the rotational
diffusion coefficient Dr as follows [303]:

OA(t) = exp (−2Drt) . (A.19)

Throughout this Thesis, to compute OA we used a custom analysis software pyBrown-tools

(Appendix D.3).
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Appendix B

Ewald summation of
Rotne-Prager-Yamakawa diffusion matrix

In Brownian dynamics (BD) simulations, periodic boundary conditions are often used to elimi-
nate the problem of system boundaries. However, hydrodynamic interactions decay slowly with
distance (∝ 1

rij
), so the Ewald summation method is applied to attain their convergence. It is a

similar problem to the Ewald summation of electrostatic interactions.
The Ewald summation method divides the expressions for the diffusion matrix elements

into two contributions. The short-range contributions are calculated in the real space and the
long-range in the reciprocal space. The Ewald-summation scheme of the generalized Rotne-
Prager-Yamakawa (RPY) diffusion matrix described in this appendix was introduced by Smith
et al. [304].

We assume that the finite simulation cubic box is L×L×L. Then, periodic boundary con-
ditions mean that each particle with position ri has an infinite number of replicas at coordinates
ri + Lm, where m is an arbitrary vector of integers. The periodic RPY matrix is expressed as
follows:

Dij =
kBT

6πηai

{
δijI +

[
3ai
4L
OPBC

(rij
L

)
+

a3
i

2L3
QPBC

(rij
L

)]}
, (B.1)

where, kB is a Boltzmann constant, T is temperature, η is dynamic viscosity of a fluid, ai
hydrodynamic radius of i-th particle, δij is the Kronecker delta, and rij is vector pointing from
i-th to j-th particle.

Below we will use a distance relative to the box size σij defined as follows:

σij =
rij
L
, (B.2)

and we will denote unit vectors with a hat, e.g.:

v̂ =
v

v
, (B.3)
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where:

v =
√
vTv. (B.4)

For σij /∈ {m}, i.e., interactions between different particles (off-diagonal blocks of diffu-
sion matrixD):

OPBC (σij) =
∑
m

[
erfc

(
α

√
(m+ σij)

T (m+ σij)

)
O (m+ σij) +

2α√
π

exp
(
−α2 (m+ σij)

T (m+ σij)
) (m+ σij) (m+ σij)

T

(m+ σij)
T (m+ σij)

]
+

∑
n 6=0

2

πnTn
exp

(
−π

2nTn

α2

)
exp

(
2πinTσij

) [
I −

(
1 +

π2nTn

α2

)
n̂n̂T

]
; (B.5a)

QPBC (σij) =
∑
m

[
erfc

(
α

√
(m+ σij)

T (m+ σij)

)
+

2α√
π

√
(m+ σij)

T (m+ σij) exp
(
−α2 (m+ σij)

T (m+ σij)
)]
Q (m+ σij)−∑

m

4α3

√
π

exp
(
−α2 (m+ σij)

T (m+ σij)
) (m+ σij) (m+ σij)

T

(m+ σij)
T (m+ σij)

+

4π
∑
n 6=0

exp

(
−π

2nTn

α2

)
exp

(
2πinTσij

)
n̂n̂T , (B.5b)

and for σij ∈ {m}, i.e., interactions with self-images (diagonal blocks of diffusion matrixD):

OPBC (m′) =
∑
m 6=0

[
erfc

(
α
√
mTm

)
O(m) +

2α√
π

exp
(
−α2mTm

)
m̂m̂T

]
−

3αai
2
√
πL
I +

∑
n 6=0

2√
πnTn

exp

(
−π

2nTn

α2

)[
I −

(
1 +

π2nTn

α2

)
n̂n̂T

]
; (B.6a)

QPBC (m′) =
∑
m 6=0

[
erfc

(
α
√
mTm

)
+

2α√
π

√
mTm exp

(
−α2mTm

)]
Q(m)−

∑
m 6=0

4α3

√
π

exp
(
−α2mTm

)
m̂m̂T − 1

3
√
π

(αai
L

)3

I + 4π
∑
n 6=0

exp

(
−π

2nTn

α2

)
n̂n̂T .

(B.6b)
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The auxiliary matricesO andQ are defined in the following way:

O(v) =
1

v

(
I + v̂v̂T

)
; (B.7a)

Q(v) =
1

v3

(
I − 3v̂v̂T

)
. (B.7b)

Symbol erfc stands for the complementary error function, and α is an arbitrary constant gov-
erning the division of the summation among real and reciprocal space components.

In practice, number of m and n vectors included in sums in Eqs. B.5 and B.6 has to be
limited. Cutoffs on these lattice vectors are defined by parameters mcutoff and ncutoff . The m,
n vectors are included, if their entries fulfill following inequalities:

|m1|+ |m2|+ |m3| ≤ mcutoff ; (B.8a)

|n1|+ |n2|+ |n3| ≤ ncutoff . (B.8b)

As shown by Beenakker, [305] the same equations may be applied to spheres of different
sizes by the following substitution:

a3 → 1

2
ai
(
a2
i + a2

j

)
. (B.9)

For overlapping beads the expressions are corrected simply by adding a difference of the re-
spective generalized RPY expressions as follows:

∆Doverlap
ij = Aij −Bij, (B.10)

where Bij is given by Eq. 3.7a and Aij is given either by Eq. 3.7b, or by Eq. 3.7c, depending
on rij , ai, and aj (see whole Eq. 3.7 for details).
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Appendix C

Resistance matrix scalar functions

Exact two-body resistance tensor ξ2B is expressed using dimensionless center-to-center separa-
tion s and the ratio of hydrodynamic radii λ:

s =
2r

a1 + a2

; (C.1a)

λ =
a2

a1

, (C.1b)

where r is distance between the particles of hydrodynamic radii a1 and a2. The formulas were
obtained by Jeffrey & Onishi [90]. The translational part reads:

ξij = 6πηa1

{
XA
ij (s, λ) r̂r̂T + Y A

ij (s, λ)
[
δijI − r̂r̂T

]}
, (C.2)

where η is dynamic viscosity, r is a vector pointing from particle 1 to particle 2, and r̂ = r/r.
Equation C.2 involves a set of scalar resistance functions: XA

11, XA
12, XA

21, XA
22, Y A

11 , Y A
12 , Y A

21 and
Y A

22 . It is important to mention that the paper by Jeffrey & Onishi [90] contains few mistakes,
although not in expressions used here, which were spotted and corrected by Townsend [306],
so one should be careful when referring to it.

Pertinent scalar functions read:

XA
11 (s, λ) = gX1 (λ) ·

(
1− 4s−2

)−1 − gX2 (λ) · ln
(
1− 4s−2

)
−

gX3 (λ) ·
(
1− 4s−2

)
ln
(
1− 4s−2

)
+ fX0 (λ)− gX1 (λ) +

∞∑
m=2
m even

[
2−m (1 + λ)−m · fXm (λ)− gX1 (λ)− 2m−1 · gX2 (λ)

+4m−1 ·m1 (m)−1 · gX3 (λ)
](2

s

)m
; (C.3a)
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XA
12 (s, λ) = −

{
2s−1 · gX1 (λ) ·

(
1− 4s−2

)−1
+ gX2 (λ) · ln s+ 2

s− 2

+gX3 (λ) ·
(
1− 4s−2

)
ln
s+ 2

s− 2
+ 4gX3 (λ) · s−1+

∞∑
m=1
m odd

[
2−m

(
1 + λ−1

)−m · fXm (λ)− gX1 (λ)− 2m−1 · gX2 (λ) +

4m−1 ·m1 (m)−1 · gX3 (λ)
](2

s

)m}
,= l (C.3b)

XA
22 (s, λ) = λXA

11

(
s,

1

λ

)
; (C.3c)

Y A
11 (s, λ) = −gY2 (λ) · ln

(
1− 4s−2

)
− gY3 (λ) ·

(
1− 4s−2

)
ln
(
1− 4s−2

)
+

fY0 (λ) +
∞∑
m=2
m even

[
2−m (1 + λ)−m · fYm (λ)− 2m−1 · gY2 (λ) +

4m−1 ·m1 (m)−1 · gY3 (λ)
](2

s

)m
; (C.4a)

Y A
12 (s, λ) = −

{
gY2 (λ) · ln s+ 2

s− 2
+ gY3 (λ) ·

(
1− 4s−2

)
ln
s+ 2

s− 2
+

4 · gY3 (λ) · s−1 +
∞∑
m=1
m odd

[
2−m (1 + λ)−m · fm (λ)− 2m−1 · gY2 (λ) +

4m−1 ·m1 (m)−1 · gY3 (λ)
](2

s

)m}
; (C.4b)

Y A
22 (s, λ) = λY11

(
s,

1

λ

)
. (C.4c)

The functions use auxiliary expressions for m1 (Eq. C.5), fXi (Eq. C.6), fYi (Eq. C.7), gXi
(Eq. C.8), and gYi (Eq. C.9) polynomials, provided below:

m1 (m) = −2δm2 + (m− 2) (1− δm2) , (C.5)

fX0 (λ) = 1, (C.6a)
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fX1 (λ) = 3λ, (C.6b)

fX2 (λ) = 9λ, (C.6c)

fX3 (λ) = −4λ+ 27λ2 − 4λ3, (C.6d)

fX4 (λ) = −24λ+ 81λ2 + 36λ3, (C.6e)

fX5 (λ) = 72λ2 + 243λ3 + 72λ4, (C.6f)

fX6 (λ) = 16λ+ 108λ2 + 281λ3 + 648λ4 + 144λ5, (C.6g)

fX7 (λ) = 288λ2 + 1620λ3 + 1515λ4 + 1620λ5 + 288λ6, (C.6h)

fX8 (λ) = 576λ2 + 4848λ3 + 5409λ4 + 4524λ5 + 3888λ6 + 576λ7, (C.6i)

fX9 (λ) = 1152λ2 + 9072λ3 + 14752λ4 + 26163λ5 + 14752λ6+

9072λ7 + 1152λ8, (C.6j)

fX10 (λ) = 2304λ2 + 20736λ3 + 42804λ4 + 115849λ5 + 76176λ6+

39264λ7 + 20736λ8 + 2304λ9, (C.6k)

fX11 (λ) = 4608λ2 + 46656λ3 + 108912λ4 + 269100λ5 + 319899λ6+

269100λ7 + 108912λ8 + 46656λ9 + 4608λ10; (C.6l)

fY0 (λ) = 1, (C.7a)

fY1 (λ) =
3

2
λ, (C.7b)
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fY2 (λ) =
9

4
λ, (C.7c)

fY3 (λ) = 2λ+
27

8
λ2 + 2λ3, (C.7d)

fY4 (λ) = 6λ+
81

16
λ2 + 18λ3, (C.7e)

fY5 (λ) =
63

2
λ2 +

243

32
λ3 +

63

2
λ4, (C.7f)

fY6 (λ) = 4λ+ 54λ2 +
1241

64
λ3 + 81λ4 + 72λ5, (C.7g)

fY7 (λ) = 144λ2 +
1053

8
λ3 +

19083

128
λ4 +

1053

8
λ5 + 144λ6, (C.7h)

fY8 (λ) = 279λ2 +
4261

8
λ3 +

126369

256
λ4 − 117

8
λ5 + 648λ6 + 288λ7, (C.7i)

fY9 (λ) = 576λ2 + 1134λ3 +
60443

32
λ4 +

766179

512
λ5 +

60443

32
λ6+

1134λ7 + 576λ8, (C.7j)

fY10 (λ) = 1152λ2 +
7857

4
λ3 +

98487

16
λ4 +

2744505

128
λ5 +

67617

8
λ6−

351

2
λ7 + 3888λ8 + 1152λ9, (C.7k)

fY11 (λ) = 2304λ2 + 7128λ3 +
22071

2
λ4 +

2744505

128
λ5 +

95203835

2048
λ6+

2744505

128
λ7 +

22071

2
λ8 + 7128λ9 + 2304λ10; (C.7l)

gX1 (λ) = 2λ2 (1 + λ)−3 , (C.8a)
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gX2 (λ) =
1

5
λ
(
1 + 7λ+ λ2

)
(1 + λ)−3 , (C.8b)

gX3 (λ) =
1

42

(
1 + 18λ− 29λ2 + 18λ3 + λ4

)
(1 + λ)−3 ; (C.8c)

gY2 (λ) =
4

15
λ
(
2 + λ+ 2λ2

)
(1 + λ)−3 , (C.9a)

gY3 (λ) =
2

375

(
16− 45λ+ 58λ2 − 45λ3 + 16λ4

)
(1 + λ)−3 . (C.9b)

Recurrence formulas allowing for inclusion of further terms are available in the literature [90,
306]. In this Thesis, we include only the listed terms, and neglect the remaining ones.
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Appendix D

Software

D.1 BD_BOX

We performed Brownian dynamics (BD) simulations reported in Sections 4.3–4.5, 5.2, and 5.3
using a custom version of the BD_BOX [307] package. Original BD_BOX was authored by Dłu-
gosz [308]. Our customization included: (1) implementation of Henderson (Eq. A.7), Hamaker
(Eq. A.8), and chain entanglement softened potential (CESP) (Eq. 4.16), and potentials describ-
ing dumbbell enzymes (Eqs. 5.1 and 5.2), (2) enabling performing Choleski decomposition
every N steps, instead of every step, to reduce the computational cost, (3) allowing for overlaps
between bonded beads. Furthermore, in Section 4.4, we also used another customized version in
which attractive interactions only between Ficoll70 and dsDNA were calculated, and attractive
Ficoll70-Ficoll70 and dsDNA-dsDNA interactions were ignored.

The original BD_BOX is accessible at https://www.fuw.edu.pl/~mdlugosz/downloads.
html.

D.2 pyBrown

I developed a new, versatile pyBrown [298] software for BD and (F-version) Stokesian dy-
namics (SD) simulations and used it in Sections 4.2 and 6.3. The macromolecules are repre-
sented by beads and “molecules” composed of beads connected by harmonic bonds. In con-
trast to BD_BOX and other available open-source packages, apart from standard far-field hydro-
dynamic interactions treatment in generalized Rotne-Prager-Yamakawa (RPY) approximation
(Section 3.2.1), pyBrown includes near-field hydrodynamic interactions via improved lubrica-
tion correction (Section 3.2.2) and allows for setting the frequency of Choleski decomposition
in input file.

The code is written mainly in python3, but the most computationally demanding frag-
ments, such as building Ewald-summated RPY diffusion matrix, are written in C programming
language. Apart from pure BD simulations, pyBrown can classify trajectories into reactive and
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nonreactive, which makes it possible to compute second-order reaction rate constants with the
Northrup-Allison-McCammon (NAM) algorithm [297]. pyBrown also allows for user-defined
potentials.

The pyBrown documentation and code are accessible at https://tskora.github.io/
pyBrown/.

D.3 pyBrown-tools

To perform BD and SD trajectory analysis, I developed various tools and bundled them together
into pyBrown-tools [309] package. These tools include:

1. MSD.py for computing time-averaged mean squared displacement (TAMSD) (Eq. A.14)
and mean squared displacement (MSD) (Eq. A.15),

2. RDF.py for computing radial distribution function (RDF),

3. RotDiff.py for computing orientation autocorrelation (OA) (Eq. A.18) and mean squared
angular displacement (MSAD),

4. Lengths.py for computing bead-bead separation histograms of dumbbell enzymes.

MSD.py and RDF.py use functions from freud [310] package for molecular dynamics (MD)
trajectory analysis by Ramasubramani [311].

The pyBrown-tools code is accessible at https://github.com/tskora/pyBrown-
tools, and the freud documentation and code are accessible at https://freud.readthedocs.
io/en/latest/index.html.

D.4 ExVol

To compute excluded volume fraction φex and activity coefficients γ using Monte Carlo (MC)
integration, I developed ExVol [299] software. It performs random insertions of bead models
into crowded boxes. The code is written in python3. Skeleton of the implementation of the
algorithm is presented below:

1 def e s t i m a t e _ e x c l u d e d _ v o l u m e ( seed , t r a c e r , c rowders ,
n u m b e r _ o f _ t r i a l s , b o x _ s i z e ) :

2 pseudorandom_number_gene ra to r =
i n i t i a l i z e _ p s e u d o r a n d o m _ n u m b e r _ g e n e r a t i o n ( seed )

3 c o u n t = 0
4 f o r i in range ( n u m b e r _ o f _ t r i a l s ) :
5 p u t _ t r a c e r _ a t _ c e n t e r ( t r a c e r )

123

https://tskora.github.io/pyBrown/
https://tskora.github.io/pyBrown/
https://github.com/tskora/pyBrown-tools
https://github.com/tskora/pyBrown-tools
https://freud.readthedocs.io/en/latest/index.html
https://freud.readthedocs.io/en/latest/index.html


6 r o t a t i o n _ m a t r i x = R o t a t i o n . random ( r a n d o m _ s t a t e =
pseudorandom_number_gene ra to r ) . a s _ m a t r i x ( )

7 t r a n s l a t i o n _ v e c t o r = pseudorandom_number_gene ra to r . r and
( d imens ion )

8 t r a n s l a t i o n _ v e c t o r = t r a n s l a t i o n _ v e c t o r * b o x _ s i z e −
b o x _ s i z e / 2

9 f o r t in t r a c e r :
10 t . r o t a t e ( r o t a t i o n _ m a t r i x )
11 t . t r a n s l a t e ( t r a n s l a t i o n _ v e c t o r )
12 i f o v e r l a p _ p b c ( t r a c e r , c rowders , b o x _ s i z e ) :
13 c o u n t += 1
14 re turn c o u n t / n u m b e r _ o f _ t r i a l s

The ExVol documentation and code is accessible at https : / / tskora . github . io /
ExVol/.

D.5 PyGRPY

To compute hydrodynamic radii of rigid bead models, we used stokesRadius function from
the PyGRPY [312] package authored by Waszkiewicz [313]. The PyGRPY is a python port of
the original Fortran GRPY code by Zuk [181]. The PyGRPY code is accessible at https :
//github.com/RadostW/PyGRPY, and the GRPY is accessile at https://github.com/
pjzuk/GRPY. [181]
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Appendix E

Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) is a versatile experimental method for studying
the dynamics of macromolecules, e.g., proteins, both in vitro, in dilute solutions or complex
polymer mixtures, and in vivo, in biological cells or extracellular matrix [100, 315]. FCS al-
lows for measuring the diffusion coefficients in a non-invasive way and is extremely sensitive,
allowing for measurements of samples at nanomolar concentrations (1 nM in 1 fL spot gives, on
average, 0.6 molecules).

In FCS, laser illumination is used to excite the fluorophores in a very small (close to the
diffraction limit, so femtoliter – µm3) focal volume, defined by a focused laser beam and a
confocal aperture. To be studied with FCS, the molecules of interest have to be fluorescent
or fluorescently tagged prior to the measurements. The fluorescence emission from the focal
volume is registered as a function of time. However, the final output is not the intensity function
I(t) but the autocorrelation of fluorescence fluctuations G(τ):

G (τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2 − 1. (E.1)

In that notation:

〈I(t)〉 =
1

T

∫ T

0

I(t)dt, (E.2)

is the mean fluorescence intensity and

〈I(t)I(t+ τ)〉 =
1

T − τ

∫ T−τ

0

I(t)I(t+ τ)dt, (E.3)

is the autocorrelation, i.e., a convolution of the signal with itself.
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w0

w0

z0

Figure E.1: Scheme showing the illumination and focal volume in FCS measurement. The
focal volume is ellipsoidal, with axial half-length z0 and planar half-lengthw0. The ratio κ = z0

w0

characterizes the axial elongation.

E.1 Mathematical model

Some additional assumptions are needed to extract the diffusion coefficients from the raw FCS
data. The assumptions are embodied in a specific model used to fit the autocorrelation function.
For simplicity, the brightness profile P (r) is assumed to be axial-elongated Gaussian:

P (r) = I0 exp
[
−2
(
x2 + y2

)
/w2

0

]
exp

[
−2z2/z2

0

]
, (E.4)

where I0 is the maximal value of the fluorescence intensity, w0 is the half-length of the focal
plane, and z0 > w0 is the characteristic axial half-length (Fig. E.1). Position r is defined relative
to the center of the focal volume. The characteristic spatial parameters w0 and z0 are defined in
such a way that the brightness profile on the surface of the ellipsoid spanned by them is equal
to e−2 ≈ 0.135. Instead of z0, it is common to use the ratio defined as follows:

κ =
z0

w0

. (E.5)

Assuming that the only reason for intensity fluctuations is the Brownian motion of macro-
molecules, the autocorrelation function is expressed in the following way [315]:

GD(τ) = GD(0)

(
1 +

4Dτ

w2
0

)−1(
1 +

4Dτ

κ2w2
0

)−1/2

, (E.6)

where D is diffusion coefficient, or equivalently:

GD(τ) = GD(0)

(
1 +

τ

τD

)−1(
1 +

1

κ2

τ

τD

)−1/2

, (E.7)
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Figure E.2: Schematic plot showing the behavior of intensity fluctuation autocorrelation
function with varying conditions. The autocorrelation is scaled down upon increasing the
concentration (c) of fluorescent macromolecules (dotted lines, concentration grows from light-
blue to red), and shifted right (in the direction of higher correlation time) with the decrease
of diffusion coefficient (blue lines). The decrease may be due to decreasing temperature (T ),
increasing viscosity (η), or increasing hydrodynamic radius (a). Note that the x-axis is in a
logarithmic scale.

by introducing a diffusion time τD:

τD =
w2

0

4D
. (E.8)

The value of τD is obtained by a least-square fit of Eq. E.7 to the experimental autocorrelation
function G(τ). Furthermore, the concentration c may be obtained from the relation [315]:

GD(0) =
1

N
=

1

cVeff

=
1

cπ3/2κw3
0

, (E.9)

provided that the w0 and κ are known. N denotes the mean number of fluorescent tracers in the
focal spot of effective volume Veff = π3/2κw3

0.
Figure E.2 shows a summary of the behavior of autocorrelation function upon changes in

concentration, temperature, viscosity, and hydrodynamic radius of a diffusing macromolecule
(Eqs. 2.10 and E.9). FCS measurements are calibrated using fluorophores of known diffusion
coefficients. Upon fitting the autocorrelation to the Eq. E.7, and using definition from Eq. E.8,
the details of focal volume’s shape (w0, κ) are obtained.
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E.2 Intersystem crossing

In principle, the fluctuations in intensity may originate not only from the Brownian motion
but also from the photophysical processes and reactions in an excited state. Among these, the
most prominent is the intersystem crossing: singlet-triplet transition, which makes the macro-
molecule fluorescently inactive due to the spin selection rule. It results in an apparent decrease
of fluorescence intensity, which may well be misinterpreted as an enhanced diffusivity [217].
If the intersystem crossing timescale is significantly shorter than the diffusive one, the overall
autocorrelation function may be written as a product [315]:

G(τ) = GD(τ)GT (τ). (E.10)

The part associated with the intersystem crossing reads:

GT (τ) = 1 +
T̄

1− T̄ exp [−τ/τT ] , (E.11)

where T̄ is the fraction of macromolecules in the triplet state, and τT is the singlet-triplet relax-
ation time. GD(τ) is given by Eq. E.7.

E.3 Experimental details

The FCS results presented in Section 4.3 were obtained by our collaborators from RWTH
Aachen University and published along with our computational results [127]. Detailed techni-
cal description of the sample preparation and experimental setup are gathered in the Supporting
Information to ref. [127]. Here only the most important information is summarized.

In the diffusion measurements, fluorescently-tagged tetrameric Streptavidin labelled with
Alexa 647 was used as the tracer in nanomolar concentration regime. The protein was dissolved
in aqueous buffer at pH = 7.5 with various concentrations of crowders: Ficoll70 and 16 nm-
long (48 base pair) dsDNA. The calculated autocorrelation curves were fitted with Eq. E.10.
Diffusion coefficient values presented in Tables E.1–E.4 are averaged over five independent
measurements. When both numerator and denominator are burdened with uncertainties, σD
and σD0 respectively, these propagate and result with the uncertainty of their ratio:

σ D
D0

=
D

D0

√(σD
D

)2

+

(
σD0

D0

)2

. (E.12)
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Table E.1: Diffusion coefficients of Streptavidin within Ficoll70 solutions of different crow-
der occupied volume fractions φocc measured with FCS.

φocc % D (nm2 µs−1) σD (nm2 µs−1) D
D0

σ D
D0

0 63.8 1.2 1 0
5 57.8 0.8 0.91 0.02
10 52 1.3 0.82 0.02
20 41 3 0.65 0.05
35 23.0 1.1 0.360 0.018

Table E.2: Diffusion coefficients of Streptavidin within dsDNA solutions of different crow-
der occupied volume fractions φocc measured with FCS.

φocc % D (nm2 µs−1) σD (nm2 µs−1) D
D0

σ D
D0

1.25 50.0 0.6 0.784 0.017
2.5 36.4 0.5 0.570 0.013
5 25.8 0.7 0.404 0.013
10 4 1 0.056 0.016
15 3.9 0.4 0.062 0.006

Table E.3: Diffusion coefficients of Streptavidin within dsDNA-Ficoll70 solutions of dif-
ferent molar fractions xdsDNA and occupied volume fraction φocc = 5 % measured with
FCS.

xdsDNA % D (nm2 µs−1) σD (nm2 µs−1) D
D0

σ D
D0

0 57.8 0.8 0.91 0.02
25 25.0 0.6 0.392 0.012
50 22.6 1.4 0.35 0.02
75 20.4 1.4 0.32 0.02
100 25.8 0.6 0.404 0.012

Table E.4: Diffusion coefficients of Streptavidin within dsDNA-Ficoll70 solutions of dif-
ferent molar fractions xdsDNA and occupied volume fraction φocc = 10 % measured with
FCS.

xdsDNA % D (nm2 µs−1) σD (nm2 µs−1) D
D0

σ D
D0

0 52.0 1.3 0.82 0.02
25 23.3 0.4 0.364 0.009
50 17.5 0.4 0.275 0.009
75 7.4 0.6 0.115 0.009
100 3.6 1.0 0.056 0.016
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S., Burley, S. K., Koča, J. & Rose, A. S. Mol* Viewer: modern web app for 3D visual-
ization and analysis of large biomolecular structures. Nucleic Acids Research 49, W431–
W437 (2021).

192. Bongini, L., Fanelli, D., Piazza, F., De Los Rios, P., Sandin, S. & Skoglund, U. Freezing
immunoglobulins to see them move. Proceedings of the National Academy of Sciences
101, 6466–6471 (2004).

193. Fang, X., Kruse, K., Lu, T. & Wang, J. Nonequilibrium physics in biology. Reviews of
Modern Physics 91, 045004 (2019).

141



194. Losa, J., Leupold, S., Alonso-Martinez, D., Vainikka, P., Thallmair, S., Tych, K. M.,
Marrink, S. J. & Heinemann, M. Perspective: a stirring role for metabolism in cells.
Molecular Systems Biology 18, e10822 (2022).

195. Li, B., Dou, S.-X., Yuan, J.-W., Liu, Y.-R., Li, W., Ye, F., Wang, P.-Y. & Li, H. Intracellu-
lar transport is accelerated in early apoptotic cells. Proceedings of the National Academy
of Sciences 115, 12118–12123 (2018).

196. Feng, M. & Gilson, M. K. Enhanced Diffusion and Chemotaxis of Enzymes. Annual
Review of Biophysics 49, 87–105 (2020).

197. Pressé, S. A thermodynamic perspective on enhanced enzyme diffusion. Proceedings of
the National Academy of Sciences 117, 32189–32191 (2020).

198. Ghosh, S., Somasundar, A. & Sen, A. Enzymes as Active Matter. Annual Review of
Condensed Matter Physics 12, 177–200 (2021).

199. Zhao, X., Dey, K. K., Jeganathan, S., Butler, P. J., Córdova-Figueroa, U. M. & Sen, A.
Enhanced Diffusion of Passive Tracers in Active Enzyme Solutions. Nano Letters 17,
4807–4812 (2017).

200. Zhang, Y., Armstrong, M. J., Bassir Kazeruni, N. M. & Hess, H. Aldolase Does Not
Show Enhanced Diffusion in Dynamic Light Scattering Experiments. Nano Letters 18,
8025–8029 (2018).

201. Günther, J. P., Majer, G. & Fischer, P. Absolute diffusion measurements of active enzyme
solutions by NMR. The Journal of Chemical Physics 150, 124201 (2019).

202. Kondrat, S. & Popescu, M. N. Brownian dynamics assessment of enhanced diffusion
exhibited by ‘fluctuating-dumbbell enzymes’. Physical Chemistry Chemical Physics 21,
18811–18815 (2019).

203. Börsch, M., Turina, P., Eggeling, C., Fries, J. R., Seidel, C. A., Labahn, A. & Gräber,
P. Conformational changes of the H+-ATPase from Escherichia coli upon nucleotide
binding detected by single molecule fluorescence. FEBS Letters 437, 251–254 (1998).

204. Yu, H., Jo, K., Kounovsky, K. L., Pablo, J. J. & Schwartz, D. C. Molecular Propulsion:
Chemical Sensing and Chemotaxis of DNA Driven by RNA Polymerase. Journal of the
American Chemical Society 131, 5722–5723 (2009).

205. Muddana, H. S., Sengupta, S., Mallouk, T. E., Sen, A. & Butler, P. J. Substrate Cataly-
sis Enhances Single-Enzyme Diffusion. Journal of the American Chemical Society 132,
2110–2111 (2010).

206. Sengupta, S., Dey, K. K., Muddana, H. S., Tabouillot, T., Ibele, M. E., Butler, P. J. &
Sen, A. Enzyme Molecules as Nanomotors. Journal of the American Chemical Society
135, 1406–1414 (2013).

207. Sengupta, S., Spiering, M. M., Dey, K. K., Duan, W., Patra, D., Butler, P. J., Astumian,
R. D., Benkovic, S. J. & Sen, A. DNA Polymerase as a Molecular Motor and Pump. ACS
Nano 8, 2410–2418 (2014).

208. Riedel, C., Gabizon, R., Wilson, C. A., Hamadani, K., Tsekouras, K., Marqusee, S.,
Pressé, S. & Bustamante, C. The heat released during catalytic turnover enhances the
diffusion of an enzyme. Nature 517, 227–230 (2015).

209. Illien, P., Zhao, X., Dey, K. K., Butler, P. J., Sen, A. & Golestanian, R. Exothermicity Is
Not a Necessary Condition for Enhanced Diffusion of Enzymes. Nano Letters 17, 4415–
4420 (2017).

142



210. Jee, A.-Y., Cho, Y.-K., Granick, S. & Tlusty, T. Catalytic enzymes are active matter.
Proceedings of the National Academy of Sciences 115, E10812–E10821 (2018).

211. Jee, A.-Y., Dutta, S., Cho, Y.-K., Tlusty, T. & Granick, S. Enzyme leaps fuel antichemo-
taxis. Proceedings of the National Academy of Sciences 115, 14–18 (2018).

212. Zhao, X., Palacci, H., Yadav, V., Spiering, M. M., Gilson, M. K., Butler, P. J., Hess, H.,
Benkovic, S. J. & Sen, A. Substrate-driven chemotactic assembly in an enzyme cascade.
Nature Chemistry 10, 311–317 (2018).

213. Xu, M., Ross, J. L., Valdez, L. & Sen, A. Direct Single Molecule Imaging of Enhanced
Enzyme Diffusion. Physical Review Letters 123, 128101 (2019).

214. Jee, A. Y., Tlusty, T. & Granick, S. Master curve of boosted diffusion for 10 catalytic
enzymes. Proceedings of the National Academy of Sciences 117, 29435–29441 (2020).

215. Mathies, J. C. & Goodman, E. D. The Diffusion Coefficient and Molecular Weight of
Alkaline Phosphatase. Journal of the American Chemical Society 75, 6061–6062 (1953).

216. Bai, X. & Wolynes, P. G. On the hydrodynamics of swimming enzymes. The Journal of
Chemical Physics 143, 165101 (2015).

217. Günther, J. P., Börsch, M. & Fischer, P. Diffusion Measurements of Swimming Enzymes
with Fluorescence Correlation Spectroscopy. Accounts of Chemical Research 51, 1911–
1920 (2018).

218. Jee, A. Y., Chen, K., Tlusty, T., Zhao, J. & Granick, S. Enhanced Diffusion and Oligomeric
Enzyme Dissociation. Journal of the American Chemical Society 141, 20062–20068
(2019).

219. Golestanian, R. Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions.
Physical Review Letters 115, 108102 (2015).

220. Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a Molecular Machine by
Asymmetric Distribution of Reaction Products. Physical Review Letters 94, 220801 (2005).

221. Astumian, R. D. Trajectory and Cycle-Based Thermodynamics and Kinetics of Molec-
ular Machines: The Importance of Microscopic Reversibility. Accounts of Chemical Re-
search 51, 2653–2661 (2018).

222. Böttcher, B., Bertsche, I., Reuter, R. & Gräber, P. Direct visualisation of conformational
changes in EF0F1 by electron microscopy. Journal of Molecular Biology 296, 449–457
(2000).

223. Oyama, N., Kawasaki, T., Mizuno, H. & Ikeda, A. Glassy dynamics of a model of bacte-
rial cytoplasm with metabolic activities. Physical Review Research 1, 032038(R) (2019).

224. Illien, P., Adeleke-Larodo, T. & Golestanian, R. Diffusion of an enzyme: The role of
fluctuation-induced hydrodynamic coupling. Europhysics Letters 119, 40002 (2017).

225. Michaelis, L. & Menten, M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift
49 (1913).

226. Skóra, T., Popescu, M. N. & Kondrat, S. Conformation-changing enzymes and macro-
molecular crowding. Physical Chemistry Chemical Physics 23, 9065–9069 (2021).

227. Häusler, E., Domagalski, P., Ottens, M. & Bardow, A. Microfluidic diffusion measure-
ments: The optimal H-cell. Chemical Engineering Science 72, 45–50 (2012).

143



228. Yu, M., Silva, T. C., van Opstal, A., Romeijn, S., Every, H. A., Jiskoot, W., Witkamp,
G. J. & Ottens, M. The Investigation of Protein Diffusion via H-Cell Microfluidics. Bio-
physical Journal 116, 595–609 (2019).

229. Frentrup, H., Avendaño, C., Horsch, M., Salih, A. & Müller, E. A. Transport diffusivities
of fluids in nanopores by non-equilibrium molecular dynamics simulation. Molecular
Simulation 38, 540–553 (2012).

230. Kondrat, S. Physics and modelling of intracellular diffusion (preprint) 2018. https:
//arxiv.org/abs/1810.05496.

231. Chang, A., Jeske, L., Ulbrich, S., Hofmann, J., Koblitz, J., Schomburg, I., Neumann-
Schaal, M., Jahn, D. & Schomburg, D. BRENDA, the ELIXIR core data resource in
2021: new developments and updates. Nucleic Acids Research 49, D498–D508 (2021).

232. Behe, M. J. & Englander, S. W. Sickle hemoglobin gelation. Reaction order and critical
nucleus size. Biophysical Journal 23, 129–145 (1978).

233. Benesch, R. E., Benesch, R., Edalji, R. & Kwong, S. Intermolecular effects in the poly-
merization of hemoglobin S. Biochemical and Biophysical Research Communications
81, 1307–1312 (1978).

234. Sunshine, H. R., Hofrichter, J. & Eaton, W. A. Gelation of sickle cell hemoglobin in
mixtures with normal adult and fetal hemoglobins. Journal of Molecular Biology 133,
435–467 (1979).

235. Zimmerman, S. B. & Trach, S. O. Effects of macromolecular crowding on the association
of E.coli ribosomal particles. Nucleic Acids Research 16, 6309–6326 (1988).

236. Rivas, G., Fernandez, J. A. & Minton, A. P. Direct Observation of the Self-Association of
Dilute Proteins in the Presence of Inert Macromolecules at High Concentration via Tracer
Sedimentation Equilibrium: Theory, Experiment, and Biological Significance. Biochem-
istry 38, 9379–9388 (1999).

237. Minton, A. P. Implications of macromolecular crowding for protein assembly. Current
Opinion in Structural Biology 10, 34–39 (2000).

238. Cheung, M. S., Klimov, D. & Thirumalai, D. Molecular crowding enhances native state
stability and refolding rates of globular proteins. Proceedings of the National Academy
of Sciences 102, 4753–4758 (2005).

239. Minton, A. P. Models for Excluded Volume Interaction Between an Unfolded Protein
and Rigid Macromolecular Cosolutes: Macromolecular Crowding and Protein Stability
Revisited. Biophysical Journal 88, 971–985 (2005).

240. Minton, A. P. Influence of macromolecular crowding upon the stability and state of as-
sociation of proteins: Predictions and observations. Journal of Pharmaceutical Sciences
94, 1668–1675 (2005).

241. Snoussi, K. & Halle, B. Protein Self-Association Induced by Macromolecular Crowding:
A Quantitative Analysis by Magnetic Relaxation Dispersion. Biophysical Journal 88,
2855–2866 (2005).

242. Stagg, L., Zhang, S. Q., Cheung, M. S. & Wittung-Stafshede, P. Molecular crowding
enhances native structure and stability of α/β protein flavodoxin. Proceedings of the
National Academy of Sciences 104, 18976–18981 (2007).

144

https://arxiv.org/abs/1810.05496
https://arxiv.org/abs/1810.05496


243. Dhar, A., Samiotakis, A., Ebbinghaus, S., Nienhaus, L., Homouz, D., Gruebele, M. &
Cheung, M. S. Structure, function, and folding of phosphoglycerate kinase are strongly
perturbed by macromolecular crowding. Proceedings of the National Academy of Sci-
ences 107, 17586–17591 (2010).

244. Magno, A., Caflisch, A. & Pellarin, R. Crowding Effects on Amyloid Aggregation Ki-
netics. The Journal of Physical Chemistry Letters 1, 3027–3032 (2010).

245. Gasic, A. G., Boob, M. M., Prigozhin, M. B., Homouz, D., Daugherty, C. M., Gruebele,
M. & Cheung, M. S. Critical Phenomena in the Temperature-Pressure-Crowding Phase
Diagram of a Protein. Physical Review X 9, 041035 (2019).

246. Gomez, D., Huber, K. & Klumpp, S. On Protein Folding in Crowded Conditions. The
Journal of Physical Chemistry Letters 10, 7650–7656 (2019).

247. Heo, L., Sugita, Y. & Feig, M. Protein assembly and crowding simulations. Current
Opinion in Structural Biology 73, 102340 (2022).

248. Zhou, H. X. & Dill, K. A. Stabilization of Proteins in Confined Spaces. Biochemistry 40,
11289–11293 (2001).

249. Hall, D. & Minton, A. P. Macromolecular crowding: Qualitative and semiquantitative
successes, quantitative challenges. Biochimica et Biophysica Acta - Proteins and Pro-
teomics 1649, 127–139 (2003).

250. Rivas, G. & Minton, A. P. Macromolecular Crowding In Vitro, In Vivo, and In Between.
Trends in Biochemical Sciences 41, 970–981 (2016).

251. Homchaudhuri, L., Sarma, N. & Swaminathan, R. Effect of crowding by dextrans and
Ficolls on the rate of alkaline phosphatase–catalyzed hydrolysis: A size-dependent in-
vestigation. Biopolymers 83, 477–486 (2006).

252. Norris, M. G. & Malys, N. What is the true enzyme kinetics in the biological system?
An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-
phosphate dehydrogenase. Biochemical and Biophysical Research Communications 405,
388–392 (2011).

253. Balcells, C., Pastor, I., Vilaseca, E., Madurga, S., Cascante, M. & Mas, F. Macromolecu-
lar Crowding Effect upon in Vitro Enzyme Kinetics: Mixed Activation-Diffusion Control
of the Oxidation of NADH by Pyruvate Catalyzed by Lactate Dehydrogenase. The Jour-
nal of Physical Chemistry B 118, 4062–4068 (2014).

254. Pastor, I., Pitulice, L., Balcells, C., Vilaseca, E., Madurga, S., Isvoran, A., Cascante, M.
& Mas, F. Effect of crowding by Dextrans in enzymatic reactions. Biophysical Chemistry
185, 8–13 (2014).

255. Maximova, K., Wojtczak, J. & Trylska, J. Enzymatic activity of human immunodefi-
ciency virus type 1 protease in crowded solutions. European Biophysics Journal 48, 685–
689 (2019).

256. Minton, A. P. Water Loss in Aging Erythrocytes Provides a Clue to a General Mechanism
of Cellular Senescence. Biophysical Journal 119, 2039–2044 (2020).

257. Alric, B., Formosa-Dague, C., Dague, E., Holt, L. J. & Delarue, M. Macromolecular
crowding limits growth under pressure. Nature Physics 18, 411–416 (2022).

258. Hatters, D. M., Minton, A. P. & Howlett, G. J. Macromolecular Crowding Accelerates
Amyloid Formation by Human Apolipoprotein C-II*. Journal of Biological Chemistry
277, 7824–7830 (2002).

145



259. Shtilerman, M. D., Ding, T. T. & Lansbury, P. T. Molecular Crowding Accelerates Fib-
rillization of α-synuclein: Could an Increase in the Cytoplasmic Protein Concentration
Induce Parkinson’s Disease? Biochemistry 41, 3855–3860 (2002).

260. Sharp, K. A. Analysis of the size dependence of macromolecular crowding shows that
smaller is better. Proceedings of the National Academy of Sciences 112, 7990–7995
(2015).

261. Senske, M., Törk, L., Born, B., Havenith, M., Herrmann, C. & Ebbinghaus, S. Pro-
tein Stabilization by Macromolecular Crowding through Enthalpy Rather Than Entropy.
Journal of the American Chemical Society 136, 9036–9041 (2014).

262. Elcock, A. H. Models of macromolecular crowding effects and the need for quantita-
tive comparisons with experiment. Current Opinion in Structural Biology 20, 196–206
(2010).

263. Wirth, A. J. & Gruebele, M. Quinary protein structure and the consequences of crowding
in living cells: Leaving the test-tube behind. BioEssays 35, 984–993 (2013).

264. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-Liquid Phase Separation in Biology.
Annual Review of Cell and Developmental Biology 30, 39–58 (2014).

265. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase
transitions. Nature Physics 11, 899–904 (2015).

266. Boeynaems, S., Alberti, S., Fawzi, N. L., Mittag, T., Polymenidou, M., Rousseau, F.,
Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., Tompa, P. & Fuxreiter,
M. Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology 28,
420–435 (2018).

267. Dolgin, E. Cell biology’s new phase. Nature 555, 300–302 (2018).

268. Minton, A. P. Simple Calculation of Phase Diagrams for Liquid-Liquid Phase Separation
in Solutions of Two Macromolecular Solute Species. The Journal of Physical Chemistry
B 124, 2363–2370 (2020).

269. Minh, D. D., Chang, C. E., Trylska, J., Tozzini, V. & McCammon, J. A. The Influence of
Macromolecular Crowding on HIV-1 Protease Internal Dynamics. Journal of the Ameri-
can Chemical Society 128, 6006–6007 (2006).

270. Ackers, G. K., Doyle, M. L., Myers, D. & Daugherty, M. A. Molecular Code for Coop-
erativity in Hemoglobin. Science 255, 54–63 (1992).

271. Eaton, W. A., Henry, E. R., Hofrichter, J. & Mozzarelli, A. Is cooperative oxygen binding
by hemoglobin really understood? Nature Structural Biology 6, 351–358 (1999).

272. Yang, D., Kroe-Barrett, R., Singh, S., Roberts, C. J. & Laue, T. M. IgG cooperativity–Is
there allostery? Implications for antibody functions and therapeutic antibody develop-
ment. mAbs 9, 1231–1252 (2017).

273. Li, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth,
J. V., King, D. S., Banani, S. F., Russo, P. S., Jiang, Q. X., Nixon, B. T. & Rosen, M. K.
Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340
(2012).

274. Borcherds, W., Bremer, A., Borgia, M. B. & Mittag, T. How do intrinsically disordered
protein regions encode a driving force for liquid–liquid phase separation? Current Opin-
ion in Structural Biology 67, 41–50 (2021).

146



275. Hunter, C. A. & Anderson, H. L. What is Cooperativity? Angewandte Chemie - Interna-
tional Edition 48, 7488–7499 (2009).

276. Ercolani, G. & Schiaffino, L. Allosteric, Chelate, and Interannular Cooperativity: A Mise
au Point. Angewandte Chemie - International Edition 50, 1762–1768 (2011).

277. Janssen, M., Stenmark, H. & Carlson, A. Divalent ligand-monovalent molecule binding.
Soft Matter 17, 5375–5383 (2021).

278. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering High-Affinity
Ligands for Proteins: SAR by NMR. Science 274, 1531–1534 (1996).

279. Mack, E. T., Snyder, P. W., Perez-Castillejos, R. & Whitesides, G. M. Using Covalent
Dimers of Human Carbonic Anhydrase II To Model Bivalency in Immunoglobulins.
Journal of the American Chemical Society 133, 11701–11715 (2011).

280. Whitty, A. Cooperativity and biological complexity. Nature Chemical Biology 4, 435–
439 (2008).

281. Mangel, W. F., Lin, B. & Ramakrishnan, V. Characterization of an Extremely Large,
Ligand-Induced Conformational Change in Plasminogen. Science 248, 69–73 (1990).

282. Tsytlonok, M., Hemmen, K., Hamilton, G., Kolimi, N., Felekyan, S., Seidel, C. A.,
Tompa, P. & Sanabria, H. Specific Conformational Dynamics and Expansion Underpin
a Multi-Step Mechanism for Specific Binding of p27 with Cdk2/Cyclin A. Journal of
Molecular Biology 432, 2998–3017 (2020).

283. Pickover, C. A., McKay, D. B., Engelman, D. M. & Steitz, T. A. Substrate binding closes
the cleft between the domains of yeast phosphoglycerate kinase. Journal of Biological
Chemistry 254, 11323–11329 (1979).

284. Kumar, S. A., Murthy, N. S. & Krakow, J. S. Ligand-induced change in the radius of
gyration of cAMP receptor protein from Escherichia coli. FEBS Letters 109, 121–124
(1980).

285. Newcomer, M. E., Lewis, B. A. & Quiocho, F. A. The radius of gyration of L-arabinose-
binding protein decreases upon binding of ligand. Journal of Biological Chemistry 256,
13218–13222 (1981).

286. Dumas, C. & Janin, J. Conformational changes in arginine kinase upon ligand binding
seen by small-angle X-ray scattering. FEBS Letters 153, 128–130 (1983).

287. Olah, G. A., Trakhanov, S., Trewhella, J. & Quiocho, F. A. Leucine/isoleucine/valine-
binding protein contracts upon binding of ligand. Journal of Biological Chemistry 268,
16241–16247 (1993).

288. Taylor, T. C. & Andersson, I. Structural transitions during activation and ligand binding
in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded
spinach enzyme. Nature Structural Biology 3, 95–101 (1996).

289. Sevvana, M., Vijayan, V., Zweckstetter, M., Reinelt, S., Madden, D. R., Herbst-Irmer,
R., Sheldrick, G. M., Bott, M., Griesinger, C. & Becker, S. A Ligand-Induced Switch in
the Periplasmic Domain of Sensor Histidine Kinase CitA. Journal of Molecular Biology
377, 512–523 (2008).

290. Salvi, M., Schomburg, B., Giller, K., Graf, S., Unden, G., Becker, S., Lange, A. &
Griesinger, C. Sensory domain contraction in histidine kinase CitA triggers transmem-
brane signaling in the membrane-bound sensor. Proceedings of the National Academy of
Sciences 114, 3115–3120 (2017).

147



291. Ghobadi, S., Ashrafi-Kooshk, M. R., Mahdiuni, H. & Khodarahmi, R. Enhancement of
intrinsic fluorescence of human carbonic anhydrase II upon topiramate binding: Some
evidence for drug-induced molecular contraction of the protein. International Journal of
Biological Macromolecules 108, 240–249 (2018).

292. Cheng, R. Conformational dynamics of an unfolded biopolymer: theory and simulation
PhD thesis (2012).

293. Chen, M. & Lin, K. Y. Universal amplitude ratios for three-dimensional self-avoiding
walks. Journal of Physics A: Mathematical and General 35, 1501–1508 (2002).

294. Rubinstein, M. & Colby, R. H. Polymer Physics pp. 102–104 (Oxford University Press,
2003).

295. Grimaldo, M., Lopez, H., Beck, C., Roosen-Runge, F., Moulin, M., Devos, J. M., Laux,
V., Härtlein, M., Da Vela, S., Schweins, R., Mariani, A., Zhang, F., Barrat, J.-L., Oettel,
M., Forsyth, V. T., Seydel, T. & Schreiber, F. Protein Short-Time Diffusion in a Natu-
rally Crowded Environment. The Journal of Physical Chemistry Letters 10, 1709–1715
(2019).

296. Geyer, T. Many-particle Brownian and Langevin Dynamics Simulations with the Brown-
move package. BMC Biophysics 4, 1–20 (2011).

297. Northrup, S. H., Allison, S. A. & McCammon, J. A. Brownian dynamics simulation of
diffusion-influenced bimolecular reactions. The Journal of Chemical Physics 80, 1517–
1524 (1984).

298. Skóra, T. & Kondrat, S. pyBrown https://tskora.github.io/pyBrown/.

299. Skóra, T. ExVol https://tskora.github.io/ExVol/.

300. Hamaker, H. C. The London-van der Waals attraction between spherical particles. Phys-
ica 4, 1058–1072 (1937).

301. Czarnecki, J. & Dabroś, T. Attenuation of the van der Waals attraction energy in the
particlesemi-infinite medium system due to the roughness of the particle surface. Journal
of Colloid and Interface Science 78, 25–30 (1980).

302. Roth, C. M., Neal, B. L. & Lenhoff, A. M. Van der Waals interactions involving proteins.
Biophysical Journal 70, 977–987 (1996).

303. Kharazmi, A. & Priezjev, N. V. Molecular Dynamics Simulations of the Rotational and
Translational Diffusion of a Janus Rod-Shaped Nanoparticle. The Journal of Physical
Chemistry B 121, 7133–7139 (2017).

304. Smith, E. R., Snook, I. K. & Van Megen, W. Hydrodynamic interactions in Brownian
dynamics. Physica A: Statistical Mechanics and its Applications 143, 441–467 (1987).

305. Beenakker, C. W. J. Ewald sum of the Rotne–Prager tensor. The Journal of Chemical
Physics 85, 1581–1582 (1986).

306. Townsend, A. K. Generating, from scratch, the near-field asymptotic forms of scalar re-
sistance functions for two unequal rigid spheres in low-Reynolds-number flow (preprint)
2018. https://arxiv.org/abs/1802.08226.

307. Długosz, M. BD_BOX https://www.fuw.edu.pl/~mdlugosz/downloads.html.
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Dynamics using Taylor-Itō integrators in Python (preprint) 2022. https://arxiv.org/
abs/2209.04332.

314. Zuk, P. GRPY https://github.com/pjzuk/GRPY.

315. Lakowicz, J. R. Principles of Fluorescence Spectroscopy pp. 798–840 (Springer, 2010).

149

https://github.com/tskora/pyBrown-tools
https://freud.readthedocs.io/en/latest/index.html
https://freud.readthedocs.io/en/latest/index.html
https://github.com/RadostW/PyGRPY
https://arxiv.org/abs/2209.04332
https://arxiv.org/abs/2209.04332
https://github.com/pjzuk/GRPY


Institute of Physical Chemistry
Polish Academy of Sciences

www.ichf.edu.plKasprzaka 44/52
01-224 Warsaw, Poland


	Contents
	Funding
	Acknowledgements
	Abstract
	Streszczenie
	List of Papers
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Outline

	Theoretical background
	Brownian motion
	Anomalous diffusion
	Macromolecular crowding
	Chemical equilibria

	Methods
	Brownian dynamics simulations
	Hydrodynamic interactions
	Monte Carlo integration

	Diffusion in crowded media
	Literature review
	Effect of hydrodynamic interactions
	Effect of macromolecule's shape
	Effect of attractive interactions
	Effect of macromolecules' softness

	Enhanced enzyme diffusion
	Literature review
	Fluctuating-dumbbell model
	Effect of crowding
	H-cell microfluidics and enhanced enzyme diffusion

	Reactions under crowding
	Literature review
	Conformation-changing enzyme kinetics
	Binding of divalent molecules

	Conclusions
	Brownian dynamics implementation details
	Propagation schemes
	Interactions
	Trajectory analysis

	Ewald summation of Rotne-Prager-Yamakawa diffusion matrix
	Resistance matrix scalar functions
	Software
	BD_BOX
	pyBrown
	pyBrown-tools
	ExVol
	PyGRPY

	Fluorescence correlation spectroscopy
	Mathematical model
	Intersystem crossing
	Experimental details

	Bibliography

