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Abstract ( in English ) 

The main objective of this research was to determine the exposure health effects of 

various types of atmospherically-relevant submicron organic aerosol (OA) by using human 

lung cell lines. Airborne fine particulate matter of aerodynamic diameters < 2.5 µm (PM2.5) 

contributes to poor air quality, climatic change and exhibits adverse health effects upon 

inhalation. PM2.5 exposures trigger lung-associated pathologies, including asthma, allergy, 

chronic obstructive pulmonary disease (COPD), bronchitis, emphysema, decreased lung 

function, and increased instances of lung cancer. This research aimed to decipher changes 

in lung cells at the molecular, cellular, biochemical, and/or genomic levels, which were 

induced by submicron OA exposures originating from four different atmospheric sources, 

including from: (i) monoterpene-derived secondary organic aerosol (SOA) obtained 

through the ozonolysis of Ŭ-pinene, (ii ) heterogeneously-aged isoprene-derived particulate 

2-methyltetrol sulfates (2-MTSs), which are the most abundant particulate organosulfates 

(OS) detected in ambient PM2.5 and contribute greatly to isoprene SOA, and (iii ) atmos-

pheric-relevant mono-nitrophenols (NPs), and (iv) other key components of biomass burn-

ing aerosol (BBA).  

Two in vitro cell models, BEAS-2B (i.e., immortalized human bronchial epithelial 

cells) and A549 (i.e., adenocarcinoma human alveolar epithelial cells) were selected in the 

current thesis projects to determine acute exposure effects. In the first two sections of this 

thesis, an oxidation flow reactor (OFR) was used to produce SOA from Ŭ-pinene ozonoly-

sis, and OS mixtures produced from the heterogeneous hydroxyl radical (ÅOH)-mediated 

oxidation of particulate 2-MTSs (equivalent to 0-22 days of atmospheric aging), respec-

tively. The aerosol mixtures were analysed using liquid chromatography interfaced to high-

resolution electrospray ionization tandem mass spectrometry (LC/ESI-HR-MS/MS) to de-

tect organic acids and peroxides from Ŭ-pinene ozonolysis SOA, and multifunctional OSs 

from heterogeneously aged particulate 2-MTSs. Furthermore, qualitative chemical analyses 

of ambient PM2.5 and SOA generated from the photooxidation of a series of monocyclic 

aromatic hydrocarbons in the United States (US) Environmental Protection Agency (EPA) 

smog chamber was conducted for atmospheric NPs.  

The aerosol mixtures of known and characterized OA markers were then exposed to 

lung cells and assessed for the percentage of cellular proliferation using high throughput 
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assays; subsequent time- and concentration-dependent viability values were used to deter-

mine the inhibitory concentration-50 (IC50) of each atmospheric OA system. In addition, 

functional assays with fluorescent probes were used to detect cellular reactive oxygen spe-

cies (ROS) and mitochondrial ROS (mtROS) post-exposure; these assays used flow cytom-

etry and confocal microscopy, respectively. Changes in cellular viability were analysed 

through live/dead staining under a fluorescent microscope, whereas cells death mechanisms 

were determined through the Annexin V/Propidium Iodide assay using flow cytometry. 

Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to evaluate ge-

nomic changes that could result from exposures to heterogeneously-aged particulate 2-

MTSs to determine the post-exposure responses via modulation of oxidative stress and in-

flammatory genes.  

In the first part of this thesis, we quantified an increasing concentration response of 

three well-established Ŭ-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetri-

carboxylic acids) and a complete mixture of Ŭ-pinene ozonolysis SOA in A549 and BEAS-

2B cell lines. The atmospheric ozonolysis of Ŭ-pinene (C10H16), an abundantly emitted 

monoterpene from terrestrial vegetation, contributes significantly to the global SOA 

budget; however, its impact on pulmonary pathophysiology remains uncertain. Cellular 

proliferation, cell viability, and oxidative stress were assessed as toxicological endpoints in 

this study. The three aforementioned tracers contributed ~57% of the Ŭ-pinene ozonolysis 

SOA mass; however, multifunctional hydroperoxides identified in the SOA could have 

contributed more than these individual SOA tracers to the toxicological changes observed. 

The second part of this thesis focused on examining the inhalation toxicity associated 

with the isoprene-derived aerosol particles in the atmosphere. Isoprene (C5H8) is the most 

abundant reactive hydrocarbon released into Earthôs atmosphere from vegetation. Once 

emitted to the atmosphere and exposed therein to ÅOH under low-NOx conditions, isoprene 

oxidation yields high quantities of gaseous epoxydiols (IEPOX). These reactive intermedi-

ates interact with acidic sulfate aerosol (generated from human activities) to afford a wide 

variety of low-volatility particle-bound reaction products, such as OSs. One of the most 

abundant atmospheric OSs is 2-MTSs. 2-MTSs can undergo further chemical changes in 

the atmosphere, which leads to the formation of photochemically-aged particles of far more 

complex chemical compositions. The goal of this portion of the thesis was to gain insights 

into how these changes might contribute to increased oxidative stress and inflammatory 

responses in BEAS-2B cells.  
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The third project of this thesis involved toxicological profiling of atmospherically- 

relevant NPs using BEAS-2B and A549 cell lines. NPs are found as trace pollutants in 

various environmental matrices, including PM2.5, agricultural residues, cloud water, rain-

water, wildfires, and industrial wastes. First, an equimolar mixture of NPs was exposed to 

the eukaryotic lipid bilayer membrane to determine the exposure effects on the cell mem-

brane surface. In addition, comparative toxicology of 2-nitrophenol (2NP), 3-nitrophenol 

(3NP), 4-nitrophenol (4NP), and their equimolar mixture was provided using several ROS, 

mtROS, cellular viability, and cellular death assays.  

The last part of this thesis conducted a detailed toxicological analysis of four im-

portant BBA components in the A549 and BEAS-2B cell lines. BB is a major pollution 

source, particularly in urban, suburban, and rural areas, and was hypothesized to induce 

increased morbidity and mortality through long-term inhalation. The four BBA compo-

nents included levoglucosan (LG), 3-nitrosalicylic acid (NS), 4-nitrocatechol (NC), and 4-

nitroguaiacol (NG). The exposed cells were analysed for changes in general ROS and 

mtROS to predict altered biochemical pathways at different exposure concentrations and 

times. This study was concluded by proposing cellular death mechanisms upon exposure 

to these chemicals.  

The profiling of atmospheric aerosol mixtures and their individual markers from four 

atmospherically-relevant aerosol systems provide a comparative toxicology in lung cells. 

We predict the atmospheric system with nitro-aromatics have the highest potential for ad-

verse effects following inhalation. The response was predicted using the IC50 values and 

the number of atmospherically relevant years required to achieve that effect. This thesis 

also determines the pathophysiological changes in lungs at the molecular and cellular levels 

after exposure, which varied significantly with the chemical composition and chemical 

structure of the markers, as well as time and concentration of exposure. The study further 

highlights the need to develop regulations and control strategies to mitigate the emission 

rates of a few emission types due to their potential adverse effects following acute exposure.  
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Abstra kt (× ÊöÚÙËÕ ÐÏÌÓËÉÍ) 

WiodŃcym kierunkiem opisanych tu badaŒ byğa pr·ba okreŜlenia skutk·w 

zdrowotnych ekspozycji na r·Ũne skğadniki submikronowych czŃstek aerozolu 

organicznego (OA) o znaczeniu atmosferycznym przy uŨyciu dw·ch linii kom·rkowych 

pochodzŃcych z ludzkich pğuc. UnoszŃce siň w powietrzu drobne czŃstki stağe o Ŝrednicach 

aerodynamicznych < 2,5 µm (tzw. frakcja respirabilna PM2.5) sŃ gğ·wnŃ przyczynŃ 

pogorszenia jakoŜci powietrza, zmian klimatycznych, a nade wszystko ï  wykazujŃ 

niekorzystne skutki zdrowotne podczas wdychania. Ekspozycja na czŃstki PM2.5 wywoğuje 

liczne patologie ukğadu oddechowego, w tym: astmň, alergie, przewlekğŃ obturacyjnŃ 

chorobň pğuc (POChP), zapalenie oskrzeli, rozedmň pğuc, zmniejszonŃ czynnoŜĺ pğuc i 

liczne przypadki raka pğuc. Badania opisane w niniejszej pracy majŃ na celu próbň 

rozszyfrowanie zmian zachodzŃcych w ludzkich kom·rkach pğuc na poziomie 

molekularnym,  biochemicznym i/lub genowym, które to zmiany zostağy wywoğane 

ekspozycjŃ na respirabilny pyğ aerozolowy OA. Pyğ ·w pochodziğ z czterech istotnych 

Ŧr·değ: (i) procesy utleniania nienasyconych wňglowodor·w monoterpenowych w 

reakcjach ozonu z Ŭ-pinenem (Ŭ-pinenowe SOA), (ii ) procesy chemicznego starzenia 

aerozolu izoprenowego wzbogaconego we polarnŃ frakcjň organosiarczanowŃ, w tym 

siarczan 2-metylotetrolu (2-MTS) (poddane starzeniu izoprenowe SOA), (iii ) utlenianie 

wňglowodor·w aromatycznych w powietrzu zanieczyszczonym tlenkami azotu 

(atmosferyczny mono-nitrofenolowy aerozol) oraz (iv) procesy spalania biomasy  (BBA) 

(aerozol spalania biomasy). 

W celu okreŜlenia skutk·w ostrej ekspozycji na kluczowe skğadniki pyğ·w z wyŨej 

wymienionych Ŧr·değ do badaŒ in vitro wybrağam dwa modele komórkowe : BEAS-2B (tj. 

unieŜmiertelnione ludzkie kom·rki nabğonka oskrzeli) i A549 (tj. kom·rki ludzkiego 

gruczolakoraka). W pierwszych dwóch projektach opisanych w niniejszej rozprawy, 

czŃstki Ŭ-pinenowe SOA oraz aerozolu izoprenowego zostağy wytwarzağam w 

laboratorium w przepğywowym reaktorze utleniajŃcym (OFR) z uŨyciem chemii rodnik·w 

hydroksylowych (ÅOH). W przypadku aerozolu izoprenowego proces jego starzenia 

chemicznego prowadziğam  w ukğadzie heterogenicznym, co odzwierciedla procesy 

starzenie atmosferycznego w czasie od 0 do 22 dni. Tak wytworzony aerozol poddağam 

analizom chemicznym z uŨyciem wysokosprawnej chromatografii cieczowej sprzňŨonej z 

wysokorozdzielczym tandemowym spektrometrem mas wyposaŨonym w Ŧr·dğo 
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elektrosprej (LC/ESI-HR-MS/MS). Analizy te byğy ukierunkowane na oznaczenie 

gğ·wnych skğadnik·w chemicznych wytworzonego aerozolu, w tym: kwasów 

karboksylowych, nadtlenk·w oraz zwiŃzk·w wielofunkcyjnych. W celu por·wnawczym 

przeprowadziğam analizy skğadu chemicznego rzeczywistego aerozolu frakcji PM2.5 oraz 

aerozolu wytworzonego w komorach aerozolowych AmerykaŒskiej Agencji środowiska 

(US EPA) w procesach fotoutleniania monocyklicznych wňglowodor·w aromatycznych. 

Wyniki tych ostatnich analiz opisağam w trzecim rozdziale niniejszej pracy.  

Wytworzone laboratoryjnie mieszaniny aerozolowe, zawierajŃce zar·wno znane 

markery, jak r·wnieŨ nowe skğadniki, wprowadzağam do hodowli kom·rkowych pğuc 

celem oceny ich dziağania cytotoksycznego na owe komórki ze szczególnym 

uwzglňdnieniem proces·w proliferacji. Wyznaczona eksperymentalnie ŨywotnoŜĺ 

kom·rkowa (zaleŨna od czasu i/lub stňŨenia badanego skğadnika SOA) posğuŨyğa mi  do 

okreŜlenia stňŨenia hamujŃcego  IC50 tego skğadnika lub ich mieszanin. Ponadto 

zastosowağam testy funkcjonalne z sondami fluorescencyjnymi do detekcji tworzŃcych siň 

komórkowych (ROS) i mitochondrialnych (mtROS) reaktywnych form tlenu po 

ekspozycji; testy te wykorzystywağy odpowiednio cytometriň przepğywowŃ oraz 

mikroskopiň konfokalnŃ. Zmiany ŨywotnoŜci kom·rkowej analizowağam z uŨyciem 

mikroskopii fluorescencyjnej i test·w barwnych dla Ũywych i/lub martwych kom·rek, 

podczas gdy procesy apoptozy komórkowej ï w teŜcie aneksyny V/jodku propidyny przy 

uŨyciu cytometrii przepğywowej. Wykorzystağam iloŜciowŃ reakcjň ğaŒcuchowŃ 

polimerazy w czasie rzeczywistym (RT-qPCR) do oceny zmian genowych, kt·re byğy 

wynikiem ekspozycji aerozolu na badane kom·rki, indukowanych  przez modulacjň stresu 

oksydacyjnego i ekspresjň gen·w zapalnych. 

W pierwszej czňŜci niniejszej pracy okreŜliğam iloŜciowo reakcjň na wzrastajŃce 

stňŨenia trzech znanych skğadnik·w Ŭ-pinenowego SOA, tzn. kwasu pinowego, 

pinonowego i 3-metylo-1,2,3-butanotrikarboksylowego oraz peğnej mieszaniny 

Ŭ-pinenowego SOA w liniach komórkowych A549 i BEAS-2B. W trakcie badaŒ 

oznaczağam zmiany w proliferacji kom·rkowej, ŨywotnoŜĺ kom·rek oraz stres 

oksydacyjny. Procesy ozonolizy Ŭ-pinenu (C10H16) ï obficie emitowanego lotnego zwiŃzku 

organicznego klasy monoterpenów przez roŜlinnoŜĺ lŃdowŃ, ma znaczŃcy udziağ w 

budŨecie SOA na poziomie globalnym; jednak co ciekawe, jego wpğyw na patofizjologiň 

pğuc pozostawağ ciŃgle niepewny. Badania skğadu chemicznego Ŭ-pinenowego SOA 

udowodniğy ~57 % udziağ w jego masie kwasu pinowego, pinonowego i 3-metylo-1,2,3-
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butanotrikarboksylowego oraz znaczŃcy wkğad wielofunkcyjnych wodoronadtlenk·w. 

Postawiğam hipotezň, Ũe te ostatnie sŃ gğ·wnŃ przyczynŃ obserwowanych zmian 

toksykologicznych badanego aerozolu. 

Druga czňŜĺ niniejszej pracy dotyczy badaŒ toksycznoŜci inhalacyjnej zwiŃzanej z 

czŃsteczkami aerozolu pochodzenia izoprenowego. Izopren (C5H8) to najobficiej (po 

metanie) emitowany do atmosfery wňglowod·r przez ekosystemy roŜlinne. Po 

przedostaniu siň do dolnych warstw atmosfery izopren ulega reakcjom z rodnikami 

hydroksylowymi ÅOH. W warunkach niskiego stňŨenia NOx (NOX = NO + NO2) reakcja ta 

prowadzi do tworzenia bardzo reaktywnych produkt·w poŜrednich w fazie gazowej, w tym 

epoksydioli (IEPOX). Te ostatnie reagujŃ dalej, co dostarcza szerokiej gamy produktów o 

malejŃcych prňŨnoŜciach par, takich jak organiczne siarczany (organosiarczany, OS), w 

tym najbardziej rozpowszechniony w atmosferze siarczan 2-metylotetrolu (2-MTS). 

2-MTS moŨe ulegaĺ dalszym przemianom chemicznym, co prowadzi do powstania 

fotochemicznie starzejŃcych siň czŃstek o znacznie bardziej zğoŨonym skğadzie 

chemicznym. W badaniach opisanych w tej czňŜci pracy pokazağam, Ũe chemiczne 

starzenie czŃstek aerozolu izoprenowego nasila stres oksydacyjnego oraz indukuje procesy 

zapalne w liniach komórkach BEAS-2B. 

Trzeci zrealizowany projekt badawczy dotyczyğ oznaczania profilu 

toksykologicznego mono-nitrofenoli. ZwiŃzki te stanowiŃ powszechne i niebezpieczne 

zanieczyszczenia Ŝrodowiska, w formie ï pyğ·w respirabilnych w atmosferze, pozostağoŜci 

rolniczych w glebie, wód atmosferycznych i lŃdowych, produktów niekontrolowanych 

poŨar·w i odpadów przemysğowych. We  wsp·ğpracy z AmerykaŒskŃ AgencjŃ środowiska 

pokazağam, Ũe jednym z waŨnych Ŧr·değ mono-nitrofenoli w atmosferze sŃ produkty 

utleniania wňglowodor·w aromatycznych, które to produkty wchodzŃ w skğad czŃstek 

aerozolu. W pierwszej fazie badaŒ zweryfikowağam hipotezň negatywnego oddziağywania 

mono-nitrofenoli na powierzchniň bğony kom·rkowej pğuc. Wykorzystağam tu zarówno 

sztucznŃ dwuwarstwowŃ bğonň lipid·w eukariotycznych (otrzymanŃ w laboratorium), jak 

r·wnieŨ Ũywe kom·rki pochodzŃce obu linii komórkowych. W drugiej fazie przedstawiğam 

porównawcze badania toksykologiczne 2-nitrofenolu (2NP), 3-nitrofenolu (3NP), 4-

nitrofenolu (4NP) oraz ich r·wnomolowej mieszaniny przy uŨyciu test·w ROS, mtROS, 

ŨywotnoŜci kom·rek i Ŝmierci kom·rkowej. 

W ostatniej czňŜci pracy przeprowadziğam szczeg·ğowŃ analizň toksykologicznŃ 

czterech waŨnych skğadnik·w proces·w spalania biomasy (BBA) z uŨyciem linii 
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komórkowych A549 i BEAS-2B. Spalanie biomasy jest gğ·wnym Ŧr·dğem 

zanieczyszczenia powietrza, szczególnie na obszarach miejskich, podmiejskich i wiejskich. 

Postawiğam hipotezň, Ũe dğugotrwağe wdychanie tak zanieczyszczonego powietrza moŨe 

indukowaĺ zwiňkszonŃ zachorowalnoŜĺ i ŜmiertelnoŜĺ. Cztery badane skğadniki BBA 

obejmowağy: lewoglukozan (LG), kwas 3-nitrosalicylowy (NS), 4-nitrokatechol (4NC) i 4-

nitrogwajakol (4NG). Komórki z obu linii poddağam ekspozycji na te skğadniki i 

analizowağam je pod kŃtem zachodzŃcych zmian og·lnych ROS i mtROS przy r·Ũnych 

stňŨeniach i czasach ekspozycji. Pozwoliğo to mi przewidzieĺ zachodzŃce zmiany w 

szlakach biochemicznych. Ta seria prac zakoŒczyğa siň propozycjŃ opracowania 

mechanizm·w Ŝmierci kom·rkowej po ekspozycji. 

Zrozumienie skğadu chemicznego aerozolu pochodzŃcego z czterech rozpatrywanych 

Ŧr·değ dostarczyğa mi moŨliwoŜci wykonania por·wnawczego profilu toksykologicznego 

jego gğ·wnych skğadnik·w na ludzkie kom·rki pğuc. Zebrane dane pozwoliğy okreŜliĺ 

Ŧr·dğo(a) pyğ·w z najwiňkszymi negatywnymi skutkami po inhalacji, dziňki wyznaczonym 

wartoŜciom  toksykologicznym, w tym ï IC50. Dodatkowo, opisane badania pozwoliğy mi 

szeroko nakreŜliĺ zmiany patofizjologiczne w pğucach na poziomie molekularnym i 

kom·rkowym po ekspozycji na skğadniki pyğ·w, kt·re r·Ũniğy siň istotnie w zaleŨnoŜci 

pochodzenia, skğadu chemicznego i parametr·w ekspozycji (czas, stňŨenia pr·bki). 

Przeprowadzone badania pokazujŃ pilnŃ potrzebň opracowania przepis·w i strategii 

kontroli w celu zğagodzenia skutk·w emisji pyğ·w, szczeg·lnie tych pochodzŃcych ze 

spalania biomasy, ze wzglňdu na ich potwierdzonŃ toksycznoŜĺ inhalacyjnŃ juŨ kr·tkim 

czasie ekspozycji. 
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CHAPTER 1: Literature Review 

This chapter is conceived as a general introduction to atmospheric aerosol chemis-

try and the adverse exposure effects it imposes on human health. It is organized as follows: 

the first section gives a general overview of the type of particulate matter (PM) present in 

the atmosphere and the mechanisms for the formation of secondary organic aerosol (SOA); 

the second section covers the human health implications that arise following exposure to 

atmospheric PM, which includes an introduction to in vitro models that allow for the toxi-

cological screening of hazardous pollutants in the atmosphere as well as molecular mech-

anisms that can be studied for toxicological assessment; and the third, and final, section 

reviews the literature on four major PM systems or subtypes (i.e., Ŭ-pinene SOA, isoprene 

SOA, mono-nitrophenols and biomass burning aerosol components) that are examined in 

detail as a part of this thesis, which encompasses the formation, sources, and toxicological 

data currently available on them.  

 

1.1- Atmospheric Aerosol Chemistry 

The atmosphere comprises a thin layer of mixed gases covering the Earthôs surface 

and is divided into several sublayers based on vertical temperature profiles. Two of the 

most significant layers of Earthôs atmosphere includes the troposphere (spanning up to 

15 km from the Earthôs surface) and the stratosphere (15-50 km in altitude from Earthôs 

surface).1 Atmospheric chemistry deals with the extensive photochemical reactions occur-

ring in these two sublayers, and covers the formation of secondary gases (e.g., ozone) and 

particulates (liquid or solid aerosol particles suspended in the air with diameters 

Ò100 µm).2 This section of the thesis briefly covers the literature on the sources and for-

mation of important primary and secondary organic aerosol constituents formed in the trop-

osphere, emphasizing their contributions to particulate matter (PM). 

 

1.1.1- Particulate Matter (PM) in the Atmosphere 

Atmospheric aerosol comprises fine liquid and/or solid particles suspended in ambi-

ent air with an aerodynamic diameter size Ò100 µm.3 The US EPA defines PM as óóa com-

plex mixture of particles and gases, including acids, organic emissions, metals, soils, and 
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dust of size less than micron level.ôô4 These particles are a complex mixture of dynamically 

altering physio-chemical properties that impacts the environment and life on Earth. At a 

global scale, the aerosol drives a strong effect on the Earthôs climate, radiation balance, 

abundance and distributions of trace gases, and formation of cloud condensation nuclei.5, 

6 In addition to this, the ambient PM and air pollution substantially impacts the quality of 

life, mortality rates, and human health, as demonstrated through various epidemiological 

studies.3, 7, 8 With the increased industrialization and urbanization, transportation devel-

opment, population growth, decreased forestry and frequent wild-fire emission events, PM 

is increasing of submicron particle sizes; it has also lead to the increased instances of smog 

over the recent years.2, 9 The inhalable PM fractions are also increasing in the atmosphere 

(aerodynamic diameter Ò2.5 Õm), and there is an urgent need to understand their physio-

chemical composition, formation mechanism and direct impact on air quality and human 

health.10, 11  

 The size of PM ranges from ten micrometres (10 µm) to a few nanometres (nm).7 

The PM of the aerodynamic diameter Ò10 µm are ñcoarseò inhalable particles that can in-

filtrate the human respiratory system.7, 12 Airborne fine and inhalable PM of aerodynamic 

diameter Ò2.5 µm (fine particulate matter, PM2.5) and ultra-fine particles with aerodynamic 

diameter Ò0.1 µm (PM0.1) provides a high degree of permeation deep within the cilia and 

alveoli of the lungs.13 PM2.5 and PM0.1 are associated with poor air quality,14  climatic 

change,15 and exhibits long-term adverse health effects.11 The sources of PM are through 

primary origin (i.e., natural or anthropogenic emissions), including organic carbon (OC), 

soil mineral,16 black carbon, wood combustion,17 plants and vegetations, wildfire 

emissions,18 road vehicles and fuel burning,19 industrial processes and livestock and 

animals.16 Once primary sources of organic aerosol (POA) enter the lower atmosphere 

(troposphere), they undergo further chemical reactions and atmospheric aging to form 

complex mixtures of SOA.6  

 

1.1.2- Formation of Secondary Organic Aerosol (SOA) 

An estimate of 103 to 104 organic compounds has been measured in the atmosphere, 

adding to the complexity and diversity of tropospheric SOA formation.20 SOA constituents 

the most significant mass fractions of PM2.5 (contributing upwards of 90%),21 formed from 

the atmospheric oxidation of volatile organic compounds (VOCs) by ozone (O3), hydroxyl 

radical  (ÅOH), and nitrate radicals (NO3
Å).6 Emissions of both biogenic (derived from 
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terrestrial vegetation) and anthropogenic VOCs contribute to SOA formation through the 

nucleation, condensation, or multiphase (or heterogeneous) chemical reactions of their 

semi- and/or low-volatility atmospheric organic oxidation products.6, 22, 23 The processes 

that govern the enhancement of aerosol particle mass in the atmosphere, including vapor 

condensation through sulfuric acid (H2SO4), nitric acid (HNO3) and secondary organics 

(SO) can do so without altering the particle numbers in the atmosphere. 20, 24 Both the 

particle size (mass) and particle number determine the climate and health effects of the 

aerosol in the troposphere.24 Owing to the dynamic atmospheric aging processes and 

diverse emission sources of SOA, the formation mechanisms of SOA and its composition 

remains poorly understood.6 To assess the health impacts of SOA on a global scale, it is 

important to elucidate the sources, composition and SOA formation mechanisms in the 

atmosphere. A brief summary of the processes involved in the emission and formation of 

SOA and effects of its associated PM2.5 are summarized in Figure 1.1 below. 

 

 

 

Figure 1.1. Atmospheric chemistry involves the study of primary sources of atmospheric 

emissions and the subsequent formation of secondary pollutants (e.g., SOA and O3). This 

thesis lays particular emphasis on PM2.5 formation and its inhalation effects. 
 

Biogenic SOA (BSOA) is primarily derived from the terrestrial environment, 

biomass burning (BB), and oceans, with an estimated flux of 70-1200 Tg yr-1.6, 25-27 
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Contributions from anthropogenic SOA (ASOA), e.g., fossil fuel burning fall in the range 

12-100 Tg yr-1, with an estimated 67% increase in emission rates per decade.28 Almost 

two-thirds of non-methane VOCs from biogenic sources are emitted from vegetation, 

which includes the hemiterpene (e.g., isoprene) (C5H8) with total emissions of ~350-800 

Tg yr-1,27, 29, 30 monoterpenes (Ŭ-pinene, ɓ-pinene, ŭ-limonene) (C10H16) with total 

emissions of ~120-170 Tg yr-1 27, 29, 30, sesquiterpene (C15H24) with emissions of ~25 Tg 

yr-1,27, 29, 30 and other oxygenated hydrocarbons with total emissions of 90-260 Tg yr-1.27 

Radiocarbon analysis exhibit that the most of carbon content from OA is modern, implying 

the role of BSOA precursors in driving the composition of tropospheric chemistry.6, 31, 32 

Although, BSOA emissions may be considered uncontrollable, studies have shown a direct 

correlation between BSOA formation and ASOA pollutant emissions.32 Hence, to predict 

the long-term effects of SOA on the environment, climate, and human health, the study of 

the interactions of BSOA with ASOA and their emission rates is essential to unravel. 

Furthermore, to elucidate the exposure effects of SOA on human health, it is crucial to 

understand the sources and atmospheric processes that drive their concentrations in the 

ambient air.7 

 

1.2- Environmental Pollution and Health Effects 

The 1952 London Fog event is one of the most referenced fog events in history that 

led to public awareness of the dangers of air pollution.33, 34 A study published two years 

after this major environmental and public health crisis revealed that mortality rates in-

creased (reported to be 50-300% higher than the previous year) with enhanced concentra-

tions of smog and sulfur dioxide.34 This same study also reported that the mortality rate 

did not return to normal even after 2 weeks of the incidence.34, 35 This notable air pollution 

event, along with the 1948 Donora Smog event in Pennsylvania, which reported increased 

mortality rate and cardiovascular diseases,36 inspired subsequent large-scale 

epidemiological studies, exposure assessment study cohorts, and the development of 

policies aimed at protecting public health from adverse air pollution exposures. This section 

covers key results from prior epidemiological studies on health effects of air pollution, 

alternative approaches to animal testing to systematically study environmental pollutants, 

and screening methods of certain PM/SOA subtypes at the cellular and molecular levels to 

elucidate their exposure effects inside human lung cells.  
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1.2.1- Exposure effects of PM and SOA 

PM2.5 is linked to adverse human health effects ranging from exacerbation of asthma 

symptoms to mortality associated with lung cancer and cardiopulmonary disease.37, 38 In 

addition, PM2.5 has been associated with negative health outcomes with an estimated 

contribution of more than 103.1 million indirect disabilities,39 and 9 million premature 

deaths in 2015 worldwide.12, 40 Though the general public is adversely affected by PM2.5 

exposure, susceptible populations such as the elderly, immuno-compromised  individuals, 

under-nourished individuals with low socioeconomic staus, pregnant women, children, and 

those with health disparities are at higher risk of morbidities and increased underlying 

systematic pathophysiologies.41 Studies by APHEA (Air Pollution and Health: a European 

Approach)42, 43 and USA, the National Mortality, Morbidity and Air Pollution Studies 

(NMMAPS)44, 45 have provided insights into the epidemiological effects of PM2.5 in the 

past 20 years. The data from APEHA estimated the combined impact of daily mortality 

increased by 0.6% (95% CI 0·4ï0·8) for each 10 µg mȤ3 increase in PM10 in 21 cities.43 In 

APEHA-2 studies, hospital admissions for asthma and COPD increased in people older 

than 65 years by 1.0% (0·4ï1·5) per 10 µg mȤ3 increase in PM10. Similarly, NMMAPS  

showed the mortality rate increased by 0.5% (0.1ï0.9) for each 10 µg mȤ3 increase in PM10 

in 20 meteropolitan cities of US. The World Health Organization (WHO) air quality 

guidelines suggests the PM2.5  levels threshold to be 5 ɛg mȤ3 annual mean and 15 ɛg mȤ3 

24-hr mean while PM10  levels below 20 ɛg mȤ3 annual mean and 50 ɛg mȤ3 24-h mean for 

significant decrease in chronic and acute health risks that may arise due to air pollution.10  
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Figure 1.2. Inhalation exposure to PM induces the acute and chronic health effects. 

The sources of POA and SOA have varying particle sizes, mass, and chemical composition, 

which can have different adverse effects on human health upon respiration.  

 

Owing to its small particle size and high surface area-to-volume ratio, PM2.5 is able 

to deposit deep into bronchial and alveolar lung tissues, and thus, enter the blood circulation 

to induce chronic effects on the cardiovascular system.46, 47 Exposure to PM2.5 triggers 

lung-associated pathologies including asthma, allergy,48 COPD, bronchitis, emphysema, 

decreased lung function, and increased instances of lung cancer.49 Once PM2.5 gets depos-

ited inside the lungs, it causes the induction of inflammatory cascades,50, 51 including pro-

inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8),52 c-reactive pro-

tein (CRP),53, etc. These inflammatory cytokines are associated with endothelial dysfunc-

tion, systemic inflammation, cardiological diseases, and exacerbated myocardial ische-

mia.54 In addition to PM2.5 direct exposure, other gaseous pollutants (e.g., CO, NOx , O3 

and SO2) were associated with increased instances of cardio-pulmonary diseases.55, 56  

The summary of inhalation effects of PM2.5 are summarized in Figure 1.2. 

Furthermore, exposure to particle sizes Ò PM2.5 increases susceptibility to lower and 

upper respiratory tract infections.11 Clinical studies provided evidence that PM2.5 exposure 

was positively correlated with increased numbers of hospitalization and outpatient visits.11, 

57 In one study, it was noted that increased instances of smog enhanced the morbidity 
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associated with asthma, influenza and acute respiratory tract infections.11, 58 Mechanisms 

of toxicity in lung cells include generation of free reactive oxygen species (ROS), decreased 

anti-oxidant response,59 and ÅOH-induced DNA oxidation damage and susceptibility to 

mutagenesis and other irreversible damage.60 The dysregulation of calcium (Ca2+) home-

ostasis is another mechanism through which PM2.5 induces damage inside lung cells, ROS 

increases lipid peroxidation inside cells, which in turn elevates the Ca2+ levels thereby in-

ducing cellular apoptosis or necrosis in the lungs.61 Recruitment of inflammatory cyto-

kines and over-expression of inflammation-related cytokine genes are other indicators of 

PM2.5-induced inflammatory injury in lung cells.62 To determine the exact exposure ef-

fects, there is a need to identify the chemical composition, structure, atmospheric aging, 

and source of PM2.5, which can help identify the intracellular responses in the cardio-pul-

monary system.  

 

1.2.2- In vitro  Cell Models to Study Inhalation Exposure Response of PM2.5 

 

There have been many in vivo and in vitro studies carried out over the years to 

determine the molecular and cellular changes associated with PM2.5 exposure. Even though 

there is some evidence that PM2.5 composition affects toxicity in cell lines of lung origin, 

fewer studies focus on the link between PM2.5 chemical composition and biological 

outcomes associated with its exposures.63 Various cell models are now developed and 

tested to study the effects of environmental pollutants on human health. Scientists have 

been trying to elucidate the toxicological impact more efficiently, which constrains the use 

of in vivo models. Several governments and chemical regulatory authorities have been try-

ing to conduct screening of potentially toxic, genotoxic, metabolic stressors, or carcino-

genic chemicals. Mass screening of chemical compounds and pollutants through in vitro 

and in vivo analysis has allowed the collection and maintenance of online databases such 

as USAôs ToxCast program,64 EnviroTox for aquatic compounds screening,65 and the Eu-

ropean Unionôs REACH program.66 These initiatives highlight the importance of an alter-

native to expensive/time-consuming animal testing approaches and have helped develop 

the validity and reliability of cell models to screen out the toxicological and safety profiles 

of exposed chemicals.67  

Various cell models were reported to study the toxicological effects of environmen-

tal pollutants on human cells; these are either derived from a tumour or immortalized from 
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primary cell lines.68 Normal bronchial epithelial cell lines, such as BEAS-2B (immortal-

ized by SV40/adenovirus 12 hybrid and cloned), and adenocarcinoma alveolar basal epi-

thelial cancer cell lines, such as A549, are established in vitro cell models that are utilized 

in high-throughput screening approaches.68 These two cell lines have been frequently used 

to study the impact of SOA from anthropogenic and biogenic sources,69-71 wood burning, 

gasoline exhaust, and diesel emissions, and biomass combustion products in PM2.5.17, 72 

Many studies report the use of these cell lines for in vitro assessment of oxidative stress 

and cytotoxicity following exposure to PM2.5 and gas-phase toxic pollutants.19, 70, 73-77  

Studying the molecular mechanisms associated with the changes in the proteome, 

genome, and ROS build up in cells and mitochondria may help establish the toxicological 

profile of different PM exposed to the lungs.78 It is vital to select the correct cellular model 

for exposure assessment as the PM exhibit a response inside the cells based on physiochem-

ical properties, including zeta potential, particle size, and composition. In contrast, this re-

sponse is modulated with exposure time and concentration.78 The four essential compo-

nents of risk assessment can be divided into the following steps shown in Scheme 1.1.1 

 

 

Scheme 1.1. The four major steps of environmental pollutantsô hazard assessment adopted 

in toxicological studies.  

 

When conducting toxicological assessment of a pollutant/compound not previously 

studied, it is essential to identify the source of the emission followed by the exposure as-

sessment in the correct cell model (e.g., from lung, liver, or heart with the right organism 

source). The first step in acquiring toxicological data is the establishment of the dose-re-

sponse curve to generate a safety index of the pollutant/ hazard. This is followed by detailed 

functional, molecular, biochemical, cellular, or genomic assessment at a dose lower than 

its inhibitory concentration-50 (IC50) value.1  




















































































































































































































































































































































































































































































