Thermogravimetric Study of Ionic Pt(II) Complexes Containing Bis(diphenylthiophosphinyl)methane
by F. Dogan1,2* and S. Írişli2

1Chemistry Department, Çanakkale Onsekiz Mart University, Faculty of Arts and Science, 17100, Çanakkale, Turkey
2Department of Chemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
*e-mail: fatih.dogan@ege.edu.tr

(Received March 30th, 2007; revised manuscript June 16th, 2008)

The TG-DTG and DTA study of dipositive platinum(II) complexes of the general formula [Pt(L-L)(dppmS2)](ClO4)2, where dppmS2 = Ph2P(S)CH2P(S)Ph2 and L-L = dppm (Ph2PCH2PPh2), dppe (Ph2PCH2CH2PPh2), and dppp (Ph2PCH2CH2CH2PPh2), were studied by thermogravimetric analysis from ambient temperature to 1000°C in nitrogen atmosphere. The decomposition occurred in one stage for [Pt(L-L)(dppmS2)](ClO4)2, [Pt(L-L)dppeS2](ClO4)2 and [Pt(L-L)dpppS2](ClO4)2 complexes. The values of activation energy, E, frequency factor, A, reaction order, n, entropy change, ΔS°, enthalpy change, ΔH°, and Gibss free energy change, ΔG°, of the thermal decomposition were calculated by means of Coats-Redfern method (CR), MacCallum-Tanner method (MC) and van Krevelen method (vK). The activation energy values obtained by CR, MC and vK methods were in good agreement with each other.

Key words: thermal behaviour, ionic Pt(II) complexes, activation energy
The Reciprocal CuInSe$_2$+2CdTe\leftrightarrowCuInTe$_2$+2CdSe System
by Z.V. Lavrynyuk1, O.F. Zmiy1*, O.V. Parasyuk1, I.D. Olekseyuk1
and V.I. Pekhnyo2

1Department of General and Inorganic Chemistry, Volyn National University,
Voli ave 13, 43025 Lutsk, Ukraine
*e-mail: zmiy@univer.lutsk.ua

2V.I. Vernadskii Institute for General and Inorganic Chemistry of the Ukrainian National Academy of
Sciences, Palladina Ave 32-34, 03680 Kyiv, Ukraine

(Received February 26th, 2008; revised manuscript June 18th, 2008)

Investigation of the reciprocal system CuInSe$_2$+2CdTe\leftrightarrowCuInTe$_2$+2CdSe was
performed using XRD and differential thermal analysis. The isothermal section at 870 K, the
liquidus surface projection, several vertical sections and a spatial diagram were con-
structed. The existence of a large homogeneity region of the sphalerite modifications of
the compounds was established.

Key words: semiconductors, liquid-solid, phase diagrams, thermal analysis, XRD
analysis
The Elimination of Cadmium(II) from Aqueous Environment by Supported Liquid Membrane Method Using the Basic Carrier

by M.W. Ashraf\(^1\) and A. Bukhari\(^2\)

\(^1\)Department of Natural Sciences, Prince Mohammad Bin Fahad University, P.O. Box 1664, Al-Khobar 31952, Kingdom of Saudi Arabia
*e-mail: mashraf@pmu.edu.sa

\(^2\)Center for Environment & Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia

(Received February 13th, 2008; revised manuscript July 1st, 2008)

The transport of cadmium ions through a supported liquid membrane containing triethanolamine (TEA) as a mobile carrier has been studied. The effects of Cd(II) concentration, HCl in feed and carrier concentration in membrane have been studied. Cd(II) concentration increase in feed leads to an increase in flux from 2.1×10\(^{-7}\) to 8.4×10\(^{-7}\) mol cm\(^{-2}\) sec\(^{-1}\) within Cd(II) ions concentration range (2.7×10\(^{-4}\) M – 16.3×10\(^{-4}\) M) at 2.0 M HCl in the feed and 3.0 M triethanolamine in the membrane. Increase in H\(^+\) ion concentration from 0.5 M to 3.0 M results in an increase in Cd(II) ions flux but a decrease is observed beyond 2.0 M HCl concentration in feed. Increase in carrier concentration in the liquid inside the membrane enhances the flux with its maxima at 3.0 M carrier. Further increase in the concentration of TEA leads to a decrease in transport due to increase in viscosity of membrane liquid. The optimum conditions for Cd(II) ions transport are, 2.0 M HCl in feed, 3.0 M TEA in membrane and 0.1 M NaOH as strip solution. Similar transport characteristics have been observed for Cd-EDTA complexed anions across TEA-cyclohexanone based SLM, thus indicating a cadmium anion transport coupled with protons and chloride or EDTA co-ions.

Key words: cadmium, triethanolamine, supported liquid membrane, waste effluent

Synthesis, Crystal Structures and Antifungal Activities of Two Isostructural Dinuclear Zinc(II) Complexes Derived from 4-Chloro-2-[(2-methylaminoethylimino)methyl]phenol

by Z.-P. Li*, Y.-J. Li, A.-H. Shi and Y.-Z. Ouyang

College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000, P. R. China
*e-mail: lizhiping64@126.com

(Received May 5th, 2008; revised manuscript July 1st, 2008)

Two new isostructural zinc(II) complexes with the formula Zn₂L₂X₂ (L = 4-chloro-2-[(2-methylaminoethylimino)methyl]phenolate; X = Br for (1) and Cl for (2)), have been synthesized from the reaction of the Schiff base ligand HL with zinc(II) halides in methanol solutions. The complexes have been structurally characterized by IR spectra and single-crystal X-ray diffraction. In each of the complexes, one Zn atom is in a distorted octahedral coordination, while the other Zn atom is in a distorted tetrahedral coordination. The distances between the two zinc centers are 3.126(1) Å for (1) and 3.128(1) Å for (2). The Schiff base ligand HL and the two complexes showed moderate antifungal activity against the fungi Aspergillus flavus, Fusarium and Candida albicans.

Key words: Schiff base, zinc(II) complex, synthesis, crystal structure, antifungal activity
Bimetallic Ag(I)-Cu(II) Assembly with Extended Oxamido-Bridged: Synthesis, Crystal Structure and Magnetism

by S.-L. Ma¹*, S. Ren¹ and H.-Y. Zhang²

¹Department of Application Chemistry, College of Science, Tianjin University of Commerce, Tianjin, 300134, People’s Republic of China
²Library of Tianjin University of Commerce, Tianjin, 300134, People’s Republic of China

*Tel.: +86-022-26686507; Fax: +86-022-26686507; e-mail: mashulin@tjcu.edu.cn

(Received April 7th, 2008; revised manuscript July 17th, 2008)

A new bimetallic compound Cu₂(oxae)(H₂O)₂Ag₂(CN)₄ (I) (oxae = N,N'-bis(2-aminoethyl)oxamido dianion) was isolated and structurally characterized. Compound I crystallizes in the monoclinic system, with space group P2₁/c and unit cell constants a = 14.033(18), b = 7.165(9), c = 9.378(12) Å, β = 103.890(14)° and Z = 2. The complex I consists of the oxamido-bridged binuclear copper(II) unit and two linear cyanargentate anions acting as monochelate ligands. The coordinated environment of the Cu atom is a square prism. The complex I is self-assembled into three-dimensional (3D) network via hydrogen bonds. The magnetic properties of I have been studied as well.

Key words: cyanargentate, crystal structure, magnetic property, hydrogen bond, argentophilic interaction
Influence of Gelation Temperature on the Properties of Sol-Gel-Derived Calcium Hydroxyapatite Ceramics

by I. Bogdanoviciene¹, K. Tõnsuadu² and A. Kareiva¹∗

¹Department of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
²Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn, Estonia

(Received April 14th, 2008; revised manuscript July 21st, 2008)

An aqueous sol-gel chemistry synthesis route has been developed to prepare calcium hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, CHA) samples at different gelation temperatures. In the sol-gel processes, an aqueous solution of tartaric acid as complexing agent was used. The phase transformations, composition and micro-structural properties of the polycrystalline samples were studied by thermogravimetric analysis (TG), differential thermal analysis (DTA), energy-dispersive spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD) and scanning electron microscopy (SEM). It was clearly demonstrated that temperature of initial stage of the preparation of CHA is a crucial parameter to obtain monophasic calcium hydroxyapatite powders with desired morphological properties.

Key words: biomaterials, calcium hydroxyapatite, sol-gel preparation
A Convenient Synthesis of 1-(ω-Aminoalkyl)-5-nitro-1H-pyrimidine-2,4-diones

by E. Węgrzynek and K. Walczak*

Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland

*Tel. + 4832 237 1792; Fax: +4832 237 2094; e-mail: Krzysztof.Walczak@polsl.pl

(Received April 28th, 2008; revised manuscript June 13th, 2008)

Several monoacylated alkylene diamines have been obtained in the reaction of appropriate amine with methyl phenylacetate or ethyl formate. The mono protected diamines were used as alkylating agents in reactions with 1-(2,4-dinitrophenyl)-5-nitouracil. The series of hitherto unknown 1-(ω-aminoalkyl)-5-nitouracil derivatives have been obtained as a result of the uracil ring transformation. The best yield of 1-(ω-aminoalkyl)-5-nitouracils was obtained when N-Boc protected alkylene diamines were applied in this reaction. The N-Boc protecting group was cleaved using diluted trifluoroacetic acid, and the liberated amines were subjected to reaction with phthalic anhydride and naphthalene 1,8-dicarboxylic anhydride.

Key words: 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 5-nitouracil, phthalic anhydride, naphthalene 1,8-dicarboxylic anhydride, ANRORC type reaction
Syntheses of \(N, S\)-Substituted 4-Chloro-2-mercapto-5-methylbenzenesulfonamide Derivatives with Potential Biological Activity

by E. Pomarnacka1*, A. Kornicka1, P.J. Bednarski2 and A. Charkiewicz1,2

1Department of Chemical Technology of Drugs, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
Tel. +48 58 3493254; Fax +48 58 349 32 57; *e-mail: zopom@amg.gda.pl

2Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Germany

(Received May 14th, 2008; revised manuscript June 13th, 2008)

The syntheses of \(N, S\)-substituted 4-chloro-2-mercapto-5-methylbenzenesulfonamide derivatives are described. The compounds 6–11, 14, 15 and 19–22 were tested for their \textit{in vitro} anticancer activity against 9 human cancer cell lines. The most active compounds 6, 9 and 20 showed moderate cytotoxic activity and were approximately 5-fold less potent than cisplatin.

\textbf{Key words}: \(N, S\)-substituted benzenesulfonamide derivatives, syntheses, anticancer activity
Synthesis of New Type of Vitamin E Glycoconjugates

by A. Hryniewicka, P. Walejko, J.W. Morzycki and S. Witkowski

Institute of Chemistry, University of Bialystok, Al. J. Piłsudskiego 11/14, 15-443 Bialystok, Poland
*e-mail: wit@uwb.edu.pl

(Received June 17th, 2008)

New type of \(\alpha\)-tocopheryl glycoconjugate containing 5-carbon linker was described. The \(\alpha\)-tocopheryl allyl ether was combined to peracetylated 3-butene-1-\(\alpha\)-mannopyranoside by cross metathesis. Transformation of the linker to easier cleavable enol ether was attempted.

Key words: \(\alpha\)-tocopherol, glycoconjugate, cross metathesis, isomerization to enol ether
Synthesis of Conjugates of Amino-Combretastatin with Tuftsin Derivatives as Potential Anticancer Agents

by K. Dzierzbicka*

Department of Organic Chemistry, Gdansk University of Technology,
11/12 G. Narutowicza Street, 80-952 Gdansk, Poland
*e-mail: kd@chem.pg.gda.pl

(Received April 28th, 2008; revised manuscript June 30th, 2008)

Novel 3'-N-(tuftsin or retro-tuftsin)-amino-combretastatin conjugates have been synthesized as potential anticancer compounds. We hope that the conjugation of immunomodulators like tuftsin derivatives with amino-combretastatin A-4 would improve the therapeutical properties of combretastatin A-4.

Key words: combretastatin A-4, CA-4, amino-combretastatin, retro-tuftsin, tuftsin, synthesis
On Chemical Bonding Between Helium and Oxygen

by W. Grochala

1The Faculty of Chemistry, The University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
2The Interdisciplinary Center for Mathematical and Computational Modeling, The University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
e-mail: wg22@cornell.edu

(Received March 31st, 2008)

A brief analysis of the He–O chemical bond, present in cationic (HeO⁺) and a few hypothetical anionic species (XHeO⁻; X = F, Cl), is performed at various levels of theory. We are also able to propose two candidates for the first metastable neutral molecule which contains helium chemically bound to oxygen: (HeO)(CsF) and (HeO)(NMe₄F).

Key words: helium, Density Functional Theory, noble gases, post Hartree-Fock methods
Photocatalytic Oxidation of Cyclohexene with Molecular Oxygen Using Immobilized Vitamin B$_{12}$ within Nanoreactors of Al-MCM-41

by F. Farzaneh1*, F. Nouroozi1 and M. Ghandi2

1Department of Chemistry, University of Alzahra, Vanak, Tehran, P.O. Box 1993891176, Iran
*e-mail: faezeh_farzaneh@yahoo.com; Fax: +9821 66495291
2School of Chemistry, University College of Science, University of Tehran, Tehran, P.O. Box 131451318, Iran

(Received March 25th, 2008; revised manuscript June 18th, 2008)

Immobilized vitamin B$_{12}$ within nanoreactors of Al-MCM-41 (Vit.B$_{12}$/Al-MCM-41) was used as catalyst in the photooxidation of cyclohexene with molecular oxygen in CH$_3$CN using medium pressure mercury lamp at room temperature. It was found that 99% of cyclohexene was converted to 2-cyclohexene-1-one (70%), 2-cyclohexene-1-ol (15%) and cyclohexene oxide (15%). Details of reaction are discussed.

Key words: photooxidation, vitamin B$_{12}$, Al-MCM-41
Spectrokinetic Study of the Reaction System of \(2\text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4\) with Butanols Between 320–358 K in the Gas Phase

by D. Wójcik-Pastuszka* and J.T. Jodkowski

Department of Physical Chemistry, Wroclaw Medical University, Pl. Nankiera 1, 50–140 Wroclaw, Poland
*tel: +48 71 7840233, fax: +48 71 7840230, e-mail: dorotaw@kchfiz.am.wroc.pl

(Received April 28th, 2008; revised manuscript June 30th, 2008)

Spectrokinetic studies of the gas-phase equilibrium between nitrogen tetroxide and butanols in the reaction system \(2\text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4\) (1, 2), \(\text{N}_2\text{O}_4 + \text{ROH} \leftrightarrow \text{RONO} + \text{HNO}_3\) (3, 4) have been undertaken in the temperature range 298–358 K. The products – RONO (\(n\)-butyl-ONO, \(s\)-sec-butyl-ONO, \(i\)-iso-butyl-ONO and \(t\)-tert-butyl-ONO) – were identified by their UV spectra and the values of the maxima UV absorption cross sections were determined in the range 320–420 nm at 298 K. The temperature dependences of both the forward and reverse rate constants, \(k_3\) and \(k_4\), were obtained. The extrapolated values of the forward rate constants are \(10^{-18} \text{ k}_a^2 /\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}\): 3.9±0.3; 4.2±0.8; 5.7±1.1 and the reverse rate constants are \(10^{-20} \text{ k}_a^2 /\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}\): 0.3±0.1; 2.3±0.6; 0.4±0.1; 2.3±0.6 at 298 K for the reaction of \(\text{NO}_2/\text{N}_2\text{O}_4\) with \(n\)-butanol, \(s\)-sec-butanol, \(i\)-iso-butanol and \(t\)-tert-butanol, respectively. The activation energy for the forward \(E_3\) and for the reverse \(E_4\) reaction were derived.

Key words: nitrogen dioxide, dinitrogen tetroxide, butanols
Density Functional Study of 27Al and 14N Quadrupole Coupling Constants in the Carbon Doped (4,4) Single-Walled Armchair Aluminum Nitride Nanotube

by M. Farahani1, A. Seif2* and A. Boshra2

1Department of Physics, Malayer Branch, Islamic Azad University, Malayer, Iran
2Department of Chemistry, Boroujerd Branch, Islamic Azad University, Boroujerd, P. O. Box 65763132, Iran
*e-mail: ahmaseif@yahoo.com; Tel: 00986624453001

(Received February 7th, 2008; revised manuscript July 1st, 2008)

Density functional theory (DFT) calculations are carried out to study the influence of carbon doping (C-doping) on the aluminum-27 and nitrogen-14 quadrupole coupling constants (C_Q) in a representative model of aluminum nitride nanotubes (AlNNTs). The model includes two perfect and C-doped forms of the (4,4) single-walled armchair AlNNT. To this aim, each of two forms of AlNNT is firstly optimized and then the electric field gradient (EFG) tensors are calculated and converted to C_Q. Comparison of the calculated C_Q values in two perfect and C-doped forms of AlNNT reveals that the influence of C-doping is significant at the sites of the nearest Al and N nuclei while those nuclei far from the C atoms do not show changes.

Key words: aluminum nitride, carbon doping, density functional theory, electric filed gradient, nuclear quadrupole resonance
Investigations on the Electronic Transitions and Photofragmentation of Bromine Molecule

by D.F. Zhang

College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China

Tel: +86-027-87284018; Fax: +86-027-87384670; e-mail: zdjbb@mail.hzau.edu.cn

(Received March 5th, 2008; revised manuscript July 31st, 2008)

The electronic transitions and excited-state fragmentation of bromine molecule have been studied within the visible-near UV continuum. The molar extinction coefficients in this study are derived by performing the wave packet simulations of nuclear motion. The quantum yields of the spin-orbit Br*($^2P_{1/2}$) product at the different photon frequencies are determined as well. Employing the time-dependent density functional theory (TDDFT), the five highest occupied and the five lowest unoccupied orbitals of Br$_2$ have been analyzed, the transition to 3T$_1$ state is found to be most probable in the visible-near UV absorption band.

Key words: electronic transitions, photofragmentation, absorption spectrum
Synthesis, Characterization and Catalytic Activity of Resin-based Diiron(III) Interphase Catalysts: Model for Methane Monooxygenase

by C. Shan¹, G.-R. Qian¹, L. Zhang²,∗ and Y.-L. Luo²

¹Department of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
²Department of Chemical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
* e-mail: lzhangce@scut.edu.cn; phone and Fax: 0086-20-87110234

(Received May 28th, 2008; revised manuscript August 4th, 2008)

Three resin-based μ-oxo diiron(III) interface catalysts have been successfully prepared to model the functional properties of methane monooxygenase (MMO). The catalysts were characterized and exhibited the catalytic activities in the oxidation of alkanes to corresponding alcohols and ketones in acetonitrile at room temperature by 30% hydroperoxide (H₂O₂) or tert-butyl hydroperoxide (TBHP) as the oxidants. For 2,6-di-tert-butylphenol as the substrate, the C–C coupling was found in the two reaction systems. The reaction mechanisms were proposed with the predominant radical mechanism.

Key words: methane monooxygenase, interface catalyst, resin, catalytic activity

Carbon Tetrachloride Decomposition in Spark Discharge Plasma

by A. Lamenta*, S. Jodzis, K. Krawczyk and K. Schmidt-Szalowski

Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
*e-mail: aplamenta@ch.pw.edu.pl; kss@ch.pw.edu.pl
(Received January 28th, 2008; revised manuscript August 18th, 2008)