Two novel proton transfer compounds LH_2, (tataH$_2$)(pydc), and LH_2, (tataH$_2$)(pydc), (pydcH$_2$ = 2,6-pyridinedicarboxylic acid and tata = melamine, 2,4,6-triamino-1,3,5-triazine), were synthesized and characterized by IR, 1H and 13C NMR spectroscopy and solid state CPMAS 13C NMR. The (tataH$_2$)$_2$[Pb(pydc)$_2$]$_2$·2tata·4H$_2$O complex (1) was prepared using LH_2 and lead(II) nitrate, and characterized by IR and NMR spectroscopy and single crystal X-ray analysis. The PbII complex is a binuclear anionic complex [Pb(pydc)$_2$]$^{2-}$, in which two metal fragments are linked via a central ten-membered PbN(13)C(18)C(22)O(24)Pb(A)N(13A)C(18A)C(22A)O(24A) ring. Extensive hydrogen bonding between carboxylate groups, (tataH$_2$)$_2^+$ and water molecules throughout the PbII complex together with ion pairing play important roles in stabilizing the corresponding lattice. The protonation constants of the reactants, the equilibrium constants for the reaction of pydc with tata and the stoichiometry and stability of the PbII complex with LH_2 in aqueous solution were investigated by potentiometric pH titrations. The stoichiometry of one of the most abundant complexed species in solution was found to be the same as that of the crystalline lead complex.

Key words: lead, dipicolinic acid, melamine, X-ray crystal structure, hydrogen bonds, ion pairs, solution studies
Synthesis, Characterization and Antiferromagnetic Interaction in Oxalato-Bridged Chromium(III)–Chromium(III) Binuclear Complexes

by S.-H. Wang¹, Y.-T. Li² and C.-W. Yan³

¹Binzhou Vocational College, Binzhou, Shandong, 256624, P. R. China
²Marine Drug & Food Institute, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, P. R. China
³College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China

(Received September 7th, 2005; revised manuscript February 14th, 2006)

Two new μ-oxalato-bridged binuclear chromium(III) complexes, [Cr₂(ox)(salen)(bpy)₂](NO₃)₂ (1) and [Cr₂(ox)(salen)(phen)₂](NO₃)₂ (2) [where salen = N,N'-ethylenebis(salicylideneiminate), ox = oxalato, bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline], have been synthesized by the strategy of ‘complex as ligand’, and characterized by elemental analyses, molar conductance and magnetic moments of room-temperature measurements, and spectroscopic studies. It is proposed that the two complexes have extended ox-bridged structures consisting of two chromium(III) ions, each in an octahedral environment. The two complexes were further characterized by variable temperature magnetic susceptibility (4.2–300 K) measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, \(H = -2JS · S \), giving the exchange integrals \(J = -2.78 \text{ cm}^{-1} \) for (1) and \(J = -3.85 \text{ cm}^{-1} \) for (2). This result indicates the presence of weak antiferromagnetic interaction between the metal ions within each molecule.

Key words: μ-oxalato-bridge, chromium(III), binuclear complexes, antiferromagnetic interaction
Synthesis, Characterization of Di-\(\text{t-butyl} \)tin Piperazine Carbodithioato Complexes \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2NR \) and Crystal Structures of \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2\text{NEt} \) and \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2\text{NBz} \)

by H.D. Yin, S.C. Xue and C.H. Wang

Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, P. R. China

(Received July 25th, 2005; revised manuscript February 16th, 2006)

Ten di-\(\text{t-butyl} \)tin piperazine carbodithioato complexes \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2NR \) (\(R = \text{Et} \), \(\text{Bz} \), \(\text{H} \), \(\text{Me} \), \(\text{Ph} \), \(\text{4-Cl Ph} \), \(\text{2-Cl Ph} \), \(\text{3-Cl Ph} \), \(\text{nPr} \), \(\text{tBu} \)) have been synthesized and characterized by elemental analysis, UV, IR and NMR spectroscopies. The structures of \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2\text{NEt} \) (1) and \(\text{t-Bu}_2\text{Sn(Cl)}\)\(S_2CN(CH_2CH_2)_2\text{NBz} \) (2) have been determined by X-ray diffraction. The crystals of complexes 1 and 2 belong to monoclinic and triclinic system with space group \(P2(1)/c \) and \(P\bar{T} \), respectively, with cell dimensions: 1, \(a = 13.066(2) \) \(\AA \), \(b = 12.560(2) \) \(\AA \), \(c = 13.066(2) \) \(\AA \), \(\beta = 97.043(10)^\circ \), \(Z = 4 \), \(V = 2128.0(6) \) \(\text{Å}^3 \), \(F(000) = 936 \), \(R_1 = 0.0375 \), \(wR_2 = 0.1011 \) and 2, \(a = 8.2658(16) \) \(\AA \), \(b = 10.927(2) \) \(\AA \), \(c = 14.182(3) \) \(\AA \), \(\alpha = 97.29(3)^\circ \), \(\beta = 91.05(2)^\circ \), \(\gamma = 98.54(3)^\circ \), \(Z = 2 \), \(V = 1255.6(4) \) \(\text{Å}^3 \), \(F(000) = 532 \), \(R_1 = 0.0543 \), \(wR_2 = 0.1617 \). In the crystals of the two complexes, the tin atoms are all rendered five-coordination in a trigonal bipyramidal configuration by coordinating with both S atoms of dithiocarbamate groups.

Key words: diorganotin, heterocyclic dithiocarbamate, synthesis, crystal structure
Studies on Transport of Pb(II) Ions Using Different Crown Ethers

by W. Ashraf and A. Fazal

Department of Chemistry, King Fahd University of Petroleum & Minerals, P. O. Box 1819, Dhahran 31261, Kingdom of Saudi Arabia

(Received September 30th, 2005; revised manuscript February 20th, 2006)

Membrane based separation processes represent a sophisticated way to limit industrial wastes in the natural environment. Crown ethers have been recognized as very effective class of compounds to achieve selective separation of heavy metal ions from aqueous solutions. Lead (Pb) is a well known toxic metal and is heavily used in industry. Therefore, finding ways to selectively remove Pb(II) from aqueous solutions is important. In the present paper, different crown ethers of varying cavity size, substituent groups, donor atoms, and ring number are compared for their ability to transport Pb²⁺ through a supported liquid membrane. All experiments were carried out in a laboratory scale membrane reactor with crown ether solution immobilized on a polypropylene porous sheet interposed between feed and strip solutions. It was observed that when O atoms of the same sized macrocycle are replaced with N or S atoms, percentage recovery of Pb(II) increases significantly. By substituting a benzene ring on the same sized macrocycle, the percentage of Pb(II) transport increased from 78% to 86%. The cavity size of the crown ether seems to affect the rate of transport. After different trials, it was found that transport is maximal where the ionic radius of Pb(II) matches maximum with the cavity diameter of the macrocycle. These interactions of crown ethers with Pb(II) are explained on the basis of metal-ligand coordination chemistry.

Key words: membrane transport, lead, crown ethers, separation
Synthesis of New Derivatives of 1,2,4-Triazol-3-one
by M. Struga, M. Dobosz, J. Kossakowski, I. Dyba³a, K. Stepniak and A.E. Kozio³

1Department of Medical Chemistry, The Medical University of Warsaw, Oczki 3, 02-007 Warsaw, Poland
2Department of Organic Chemistry, Medical University, Staszica 6, 20-081 Lublin, Poland
3Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland

(Received December 12th, 2005; revised manuscript February 13th, 2006)

Reactions of nucleophilic substitution on 2,5-diphenyl-, 1,5-diphenyl-, and 5-phenyl-1,2,4-triazol-3-one were studied. Both O- and N-derivatives were obtained. Molecular structure proposed for this group of compounds was confirmed by X-ray structure analysis of selected crystals (4a, 2b, 4b, 5c).

Key words: 1,2,4-triazol-3-one derivatives, reaction of substitution, X-ray structure analysis
An Improved Method for the Synthesis of Macrocyclic Benzodiamides and Dibenzotetraamides

by E. Pańczeck1, M.J. Chmielewski2, P. Grzegorzewski1, A. Kulesza1 and J. Jurczak1,2

1Department of Chemistry, Warsaw University, 02-093 Warsaw, Pasteura 1, Poland
2Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland

(Received January 24th, 2006; revised manuscript February 13th, 2006)

Seventeen new macrocyclic diamides and tetraamides have been synthesized via amidation reactions of three various methyl phenoxyacetates, readily available from simple dihydroxybenzenes, with \(\alpha,\omega\)-diamines in methanol or ethylene glycol as solvents.

Key words: amidation reaction, macrocycles, diamides, tetraamides
N-Substituted 5-Aryl-1,3-oxazolidin-2-ones from Arylethylene Oxides

by Z. Wróbel¹, M. Bobin² and R. Karczewski¹

¹Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
²Department of Chemistry, Technical University of Warsaw (Politechnika Warszawska), Koszykowa 75, 00-661 Warsaw, Poland

(Received January 30th, 2006; revised manuscript February 13th, 2006)

Substituted 5-aryl-1,3-oxazolidin-2-ones can be efficiently prepared from arylethylene oxides and tert-butyl alkylcarbamates in the presence of catalytic amount of potassium tert-butoxide as a base. Their further hydrolysis under basic conditions provides aryl substituted aminoethanols in high yields.

Key words: epoxide, carbamate, aminoalcohol
From o-Substituted Bromoselenobenzenes to Selenaheterocycles

by P. Potaczek and J. Młochowski

Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

(Received October 14th, 2005; revised manuscript February 15th, 2006)

The reactions of two o-substituted bromoselenobenzenes: 2-(bromoseleno)benzene sulfonyl chloride and 1,2-di(bromoseleno)benzene with bisnucleophiles having amino, thiol and active methylene group have been studied. In most cases five membered rings, containing selenium as well as nitrogen and sulfur atoms, such as 1,3,2-benzothiaselenazole, 1,2,3-dithiaselenazole, benzo-1,3(2H)-thiaselenole, 1,3,2-benzodiselenazole and benzo-1,3(2H)-diselenole, were formed. The elaborated procedures have synthetic value.

Key words: selenium compounds, selenenylation, selenaheterocycles, azaheterocycles, thiaheterocycles
Interactions of the Oxidation Products of Papaverine with Guanine Quadruplexes

by L. Madry¹, E. Galezowska¹, A. Gluszynska¹, T.W. Hermann², M. Zabel³ and B. Juskowiak¹

¹Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
²Department of Physical Pharmacy and Pharmacokinetics, University of Medical Sciences, Poznan, Poland
³Department of Histology and Embryology, University of Medical Sciences, Poznan, Poland

(Received January 17th, 2006; revised manuscript March 6th, 2006)

The interactions of G-quadruplex DNA with two oxidation products of papaverine, 6a,12a-diazadibenzo-[a,g]fluorenylium derivative (1) and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium cation (2) were investigated. Effect of the organic modifier (EtOH) and NaCl on the spectral properties and aggregation of free ligands and on the DNA-binding affinity were assessed. Ligand 1 exhibited tendency for aggregation and showed higher binding selectivity for G-quadruplex DNA over double-stranded DNA. Both ligands were capable of interacting with DNA according to three binding modes: (i) electrostatic interactions, (ii) classical intercalation to dsDNA, and (iii) the specific binding to quadruplex DNA. The cytotoxic activity of ligand 2 was generally higher than that for ligand 1, approaching a micromolar concentration level that may suggest its telomerase inhibition activity.

Key words: DNA binding, G-quadruplex DNA, papaverine, telomerase inhibitor
Kinetics and Mechanism of trans-[Cr(cyca)(OH)F]^+ Complex Oxidation by [Fe(CN)6]^{3–} Ion in Strongly Alkaline Aqueous Solutions

by A. Katafias, O. Impert, P. Kita, G. Wrzeszcz and D. Dominiak

Department of Chemistry, N. Copernicus University, 87-100 Toruń, ul. Gagarina 7, Poland

(Received December 27th, 2005)

Oxidation of the trans-[Cr(cyca)(OH)F] complex, where cyca = meso-5,5,7,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by [Fe(CN)6]^{3–} ion in strongly alkaline media has been studied. A long-lived intermediate chromium(V) species was detected basing on the EPR signal at $g_{iso} = 1.986$. The hyperfine structure of the main EPR signal is consistent with the d^1-electron interactions with four equivalent or nearly equivalent nitrogen nuclei and [Cr/V=O(cyca_{ox})]^3+ formula, where cyca_{ox} = oxidized cyca, can be postulated for the intermediate CrV^+ complex. Kinetics of the rate limiting stage – electron transfer from the chromium(III) complex – has been studied in details applying an excess of the reductant and [OH–] at ionic strength equal 2.0 M. The rate law:

$$-\frac{d[Fe^{III}]}{dt} = \frac{1}{2} \frac{d[Cr^{IV}]}{dt} \frac{K[OH–]}{1 + \frac{1}{2}K[OH–]}$$

is consistent with an outer-sphere electron transfer from the conjugate base (cb) of the reductant formed in a preequilibrium (K) step. Reactivity of the deprotonated chromium(III) complex is characterized by $k^{cb}_{III} = 9.7$, $\Delta H^0 = (44.1 \pm 0.5) \text{kJ mol}^{-1}$, $\Delta S^0 = (–78.0 \pm 2.0) \text{J K}^{-1} \text{mol}^{-1}$ and the preequilibrium step – by $K^{cb} = 0.237$, $\Delta H^0 = (11.5 \pm 1.8) \text{kJ mol}^{-1}$, $\Delta S^0 = (26.6 \pm 5.8) \text{J K}^{-1} \text{mol}^{-1}$.

Key words: chromium(IV), chromium(V), electron transfer from a tetraazamacrocyclic chromium(III), EPR, hexacyanoferrate(III), kinetics
Investigation of the \(\text{Y}_2\text{X}_3–\text{Cu}_2\text{X}–\text{SnX}_2 \) (\(X = \text{S, Se} \)) Systems

by V.Ya. Shemet\(^1\), L.D. Gulay\(^1\), J. Stępień-Damm\(^2\), A. Pietraszko\(^2\) and I.D. Olekseyuk\(^1\)

\(^1\)Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk, Ukraine

\(^2\)W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, P.O. Box 1410, 50-950 Wroclaw, Poland

(Received January 2nd, 2006)

The interactions between the components in the \(\text{Y}_2\text{X}_3–\text{Cu}_2\text{X}–\text{SnX}_2 \) (\(X = \text{S, Se} \)) systems at 870 K were determined using X-ray powder diffraction. The existence of the compound \(\text{YCu}_2\text{S}_2 \) and the \(\text{Y}_{(2-x)}\text{Cu}_2\text{S}_2 (0 \leq x \leq 0.52) \) solid solution was confirmed in the \(\text{Y}_2\text{S}_3–\text{Cu}_2\text{S} \) section. The existence of the solid solution \(\text{Y}_{(2-x)}\text{Cu}_2\text{Se}_2 (0 \leq x \leq 1) \) was confirmed in the \(\text{Y}_2\text{Se}_3–\text{Cu}_2\text{Se} \) section. No compounds were found in the \(\text{Y}_2\text{S}_3–\text{SnS}_2 \) and \(\text{Y}_2\text{Se}_3–\text{SnSe}_2 \) sections. The formation of the compounds \(\text{Cu}_4\text{SnS}_4, \text{Cu}_2\text{SnS}_3, \text{Cu}_2\text{SnS}_1 \), in the \(\text{Cu}_2\text{S}–\text{SnS}_2 \) system and the \(\text{Cu}_2\text{SnSe}_1 \) compound in the \(\text{Cu}_2\text{Se}–\text{SnSe}_2 \) system was confirmed. The formation of the \(\text{Y}_3\text{Cu}_{1.20}\text{Sn}_{0.95}\text{S}_7 (0 \leq x \leq 0.09) \) solid solution and the \(\text{Y}_2\text{Cu}_{0.30}\text{Sn}_{0.69}\text{S}_5 \) compound was determined in the \(\text{Y}_2\text{S}_3–\text{Cu}_2\text{S}–\text{SnS}_2 \) system. The existence of the compound \(\text{Y}_3\text{CuSnSe}_7 \) in the \(\text{Y}_2\text{Se}_3–\text{Cu}_2\text{Se}–\text{SnSe}_2 \) system was confirmed.

Key words: X-ray analysis, isothermal section, crystal structure, phase diagram
Polymethacrylic Acid–Triton X-100 and Polymethacrylic Acid–Poly(ethylene)oxide Aqueous Systems

by A.V. Tugay, V.P. Zakordonskiy and M.M. Soltys

Department of Physical and Colloidal Chemistry, Ivan Franko National University of Lviv, 6, Kyryla & Mefodija St., 79005 Lviv, Ukraine

(Received June 28th, 2005; revised manuscript January 4th, 2006)

The interaction of both Triton X-100 and poly(ethylene)oxide (PEO-2000) with polymethacrylic acid (PMAA) in aqueous solutions has been investigated by different methods: tensiometry, conductivity, viscometry, pH- and optical density measurement. The obtained results testify, that interaction of PMAA with the nonionic surfactants of different nature is accompanied by non-additive changes of physico-chemical properties and phase separation of binary systems. Thus, the character of influence of nonionic component depends on its nature. These changes take place in the clearly defined concentration ranges ($1 \times 10^{-4} - 1 \times 10^{-3}$ M for Triton X-100 and $1 \times 10^{-2} - 1 \times 10^{-1}$ M for more high-molecular PEO-2000) and they are caused by intramolecular PMAA–surfactant complex formation. The experimental results clearly reveal, that important role in complex formation is played by hydrogen bonds. For investigated systems both the critical aggregation concentration (CAC) and the saturation concentration (C2) were calculated, and the idealized schema of the mechanism of polymer–surfactant interaction was proposed.

Key words: polymethacrylic acid, Triton X-100, PEO, polymer–surfactant interaction, H–H binding complex, hydrophobic interaction
Magnetic Susceptibility Measurements for Polycrystalline [Ni(H₂O)₆](ClO₄)₂

by M. Rachwalska¹ and K. Tomala²

¹Department of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
²Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland

(Received November 30th, 2005; revised manuscript January 25th, 2006)

The molar susceptibility of [Ni(H₂O)₆](ClO₄)₂ (powder) was investigated between 2–300 K using superconducting quantum interference. The magnetic moment of the sample was also measured at various magnetic strengths, until the sample became saturated. At low temperatures the sample shows an antiferromagnetic alignment. The effective magnetic moment connected with Ni²⁺ corresponds well with the value predicted by theory. No anomalous behavior of the molar susceptibility of [Ni(H₂O)₆](ClO₄)₂ was found at ca 225 K (as was previously stated by others authors).

Key words: [Ni(H₂O)₆](ClO₄)₂, molar susceptibility vs temperature, antiferromagnetic alignment, saturated magnetic moment
A series of compounds with formulas [Ni(CO)\textsubscript{1}R\textsubscript{2}P\textsubscript{2}S\textsubscript{2}]a and [Ni\textsubscript{2}(CO)\textsubscript{6}/c10\textsubscript{9}-R\textsubscript{4}P\textsubscript{2}S\textsubscript{2}] (R = Me, Et, Pr\textsubscript{n}, Bu\textsubscript{a} and Ph) have been prepared photochemically by the reaction of Ni(CO)\textsubscript{4} with R\textsubscript{2}PSPSR\textsubscript{2} using a 400 W medium pressure mercury lamp through a quartz-walled immersion well reactor. They were characterized by elemental analyses, IR and 31P NMR spectroscopy. The results reveal, that the diphosphine disulfide ligands show disubstitution and, thus, act as a bidentate species or monosubstitution and so act as a bridging ligand.

Key words: reaction mechanism, metal carbonyl
Synthesis and Physicochemical Study of 3d Metal Coordination Polymers with Dinegative Tetrordinate [NSNS] Schiff Base

by P.K. Panchal, H.M. Parekh, P.B. Pansuriya and M.N. Patel

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar – 388 120, Gujarat, India

(Received September 21st, 2005; revised manuscript February 22nd, 2006)