Group members:

Prof. Wlodzimierz Kutner
Dr. Eng. Krzysztof Noworyta
Dr. Agnieszka Pietrzyk
Dr. Piyush Sindhu Sharma
Dr. Eng. Piotr Pięta
Ievgen Obraztsov, M.Sc.
Marcin Dąbrowski, M.Sc.
Zofia Iskierko, M.Sc.

1. Electrochemically deposited molecularly imprinted polymer (MIP) films

![Graph](image1)

Figure 1. Resonant frequency changes with time due to repetitive FIA melamine injections for the MIP film deposited on the Pt-quartz electrode. Volume of the injected sample of 1 mM HCl solution of melamine was 100 μL. The flow rate of the 1 mM HCl carrier solution was 35 μL/min.

Scheme 1. The B3LYP/3-21G(*) optimized structure of the pre-polymerization complex of the triprotonated melamine template with three bis(2,2′-bithienyl)-benzo-[18-crown-6]methane monomer molecules.

Primarily, our research is oriented towards devising and fabrication of chemical sensors with molecularly imprinted polymer (MIP) films as recognition units. Here, a melamine piezomicrogravimetric (acoustic) chemosensor using a MIP film [1] is presented as an example. This film was deposited by potentiodynamic electropolymerization of the melamine complexing functional monomer of the bis(2,2′-bithienyl) methane derivative bearing an 18-crown-6 substituent. Structure of the MIP-melamine complex was optimized by the DFT free energy calculations at the B3LYP/3-21G(*) level, **Scheme 1.** Sensitivity and selectivity of the MIP film was largely improved by crosslinking the polymer with the bithianaphthene monomer, and the presence of a porogenic ionic liquid in the pre-polymerization solution. After electropolymerization, the melamine template was extracted from the MIP film with an aqueous strong base solution. The measurements of UV-vis spectroscopy, XPS, DPV, and EIS as well as SECM imaging confirmed exhaustive extraction of the melamine template from the MIP
film, and then rebinding of the melamine analyte. The film relative roughness and porosity was determined by AFM and SEM imaging, respectively. The analytical as well as kinetic and thermodynamic parameters of the chemosensing were assessed under flow injection analysis (FIA) conditions with piezomicrogravimetric detection using a quartz crystal microbalance (QCM), **Fig. 1.** The linear concentration range for the melamine detection was 5 nM to at least 1 mM with the limit of detection of ~5 nM. The chemosensor successfully discriminated several typical interferents.

2. Fullerene and carbon nanotube composite materials for energy storage and conversion

![Figure 2](image1.png)

Figure 2. Curves of (1') multi-scan cyclic voltammetry current, (2') the resonant frequency change, and (3') the dynamic resistance change versus applied potential for the film of the pyr-SWCNTs|(C₆₀-Pd)-PBT in 0.1 M (TBA)ClO₄ in acetonitrile. The potential sweep rate was 0.5 V s⁻¹. The film was deposited by potentiodynamic electropolymerization from 0.27 mM C₆₀, 3.56 mM palladium(II) acetate, 1 mM bisthiophene, and 0.1 M (TBA)ClO₄ in toluene : acetonitrile (4 : 1, v : v) on the Au-quartz/pyr-SWCNTs film coated electrode. Curve 1" is the CV curve for the pyr-SWCNTs film deposited on the Au-quartz electrode.

![Figure 3](image2.png)

Figure 3. Atomic force microscopy images, (5 x 5 µm²) of the film of (a, a') (C₆₀-Pd)-PBT and (b, b') pyr-SWCNTs|(C₆₀-Pd)-PBT.

Another field of our research involves fullerene and nanotube composites as active materials for supercapacitors and photovoltaic devices. By way of example, here are excerpts of results of our work on properties of the pyr-SWCNTs|(C₆₀-Pd)-PBT composite. (pyr-SWCNTs, C₆₀-Pd, and PBT stand for single-wall carbon nanotubes non-covalently modified with 1-pyrenebutanoic acid, fullerene-palladium polymer and polybithiophene, respectively.) An electrophoretically deposited film of pyr-SWCNTs was coated by potentiodynamic electropolymerization with mixed C₆₀-Pd and polybithiophene films resulting in the pyr-SWCNTs|(C₆₀-Pd)-PBT composite. The changes of current, resonant frequency, and dynamic resistance, simultaneously recorded during deposition by electropolymerization of the polymer on the pyr-
SWCNT-modified Au electrode, are presented in Fig. 2. The AFM imaging of this film revealed tangles of pyr-SWCNTs bundles coated with the \((\text{C}_{60}\text{-Pd})\)-PBT globules, Fig. 3. Electrochemical properties of the pyr-SWCNTs|\((\text{C}_{60}\text{-Pd})\)-PBT film in a supporting (TBA)\(\text{ClO}_4\) acetonitrile solution were unraveled by CV measurements, Fig. 4. Specific capacitance of the electrode coated with this composite film was ~100 F g\(^{-1}\) in the negative and ~200 F g\(^{-1}\) in the positive potential range; the latter value being comparable to those for other SWCNT composite film coated electrodes, suggesting plausible application of this composite material for supercapacitors.

3. Porphyrin films as recognition materials of chemosensors and active materials of photovoltaic devices

Moreover, we are working on novel metalloporphyrin polymers in application as (i) recognition materials for selected alkaloids [3] and (ii) active materials for photovoltaics [4]. Recently, we have devised a piezomicrogravimetric chemosensor for determination of the nicotine, cotinine, or myosmine alkaloids using two electropolymerizable Zn(II) porphyrins with receptor sites tailored for their selective recognition. These were 5-(2-phenoxyacetamide)-10,15,20-tris(triphenylamine)porphyrinato zinc(II) and 5-(2,5-phenylenebis(oxy)diacetamide)-10,15,20-tris-(triphenylamino)porphyrinato zinc(II) bearing one and two pendant amide side “pincers”, respectively, as well as three triphenylamine substituents at meso positions of the porphyrin macrocycles. These substituents were capable of electrochemical polymerization. Structural formula of the complex of nicotine with the latter zinc(II) porphyrin is proposed in...
Scheme 2. Thin films of these porphyrin polymers served for recognition and the piezoelectric microgravimetry technique for analytical signal transduction in the chemosensor. The films were deposited by potentiodynamic electropolymerization on the 10-MHz quartz resonators of an electrochemical quartz crystal microbalance (EQCM) without affecting electronic structure of the porphyrin macrocycles. Under favorable FIA conditions, the alkaloid analytes were determined at the concentration level of 0.1 mM with high sensitivity and selectivity, Fig. 5. Binding ability of the porphyrin with two pendant amide pincers appeared to be higher than that with only one pincer.

Figure 5. Piezomicrigravimetric determination of nicotine, under FIA conditions, at the 10-MHz Au/Ti/quartz resonator coated with the polymer film of porphyrin bearing two amide "pincers". The film was deposited by potentiodynamic electropolymerization at 0.1 V s⁻¹ during ten potential cycles between 0 and 1.30 V from the 0.70 mM solution of the monomer in 0.1 M (TBA)ClO₄ in o-dichlorobenzene.

In another application, we used zinc(II) porphyrin as an electron donor and a C₆₀ adduct as an electron acceptor to construct a photoelectroactive donor-acceptor dyad [4], Scheme 3. For that, first, tetrakis(4-(N,N-diphenylamino)-phenyl)porphyrinato-zinc(II), ZnP, bearing electropolymerizable triphenylamine peripheral substituents was potentiodynamically electropolymerized to form a film on an electrode surface. Formation of this film was confirmed by EQCM investigations and AMF imaging. Our optical studies revealed characteristic absorption and emission bands of the ZnP macrocycle suggesting that the π-electron system of the porphyrin monomer was maintained in the polymer. Further, the fullerene, derivatized with an imidazole ligand, was allowed to self-assemble via axial ligation of the zinc(II) center of the ZnP polymer film. The simultaneously performed piezoelectric microgravimetry and cyclic voltammetry studies proved this coordination and allowed to
Figure 6. Schematic view of the mechanism of the cathodic photocurrent generation by the [ZnP polymer film]-fullerene modified optically transparent ITO electrode.

determine formal redox potentials of both the ZnP donor and C₆₀ acceptor moiety. The fluorescence emission results, along with the DFT free energy calculations, suggested vectorial photoinduced electron transfer from the singlet-excited ZnP moiety to the coordinated C₆₀im moiety in the polymer. Systematic studies using photoelectrochemical cell, shown in Fig. 6, revealed cathodic photocurrent generation, a result unlike for most literature dye-sensitized photoelectrochemical cells. Moreover, the fullerene coordinated to the ZnP film improved generation of the photocurrent and photovoltage. For the [ZnP polymer]-fullerene hybrid film, an incident photon-to-current conversion efficiency (IPCE) in the Soret wavelength range of maximum absorption was nearly 2%.

Bibliography

Ongoing collaborations

1. Prof. Francis D’Souza and his team
 Department of Chemistry, University of North Texas, Denton, TX, USA.
 http://www.chem.unt.edu/people/DSouza.htm
 Synthesis and studies of functional and cross-linking monomers for MIP development. Design and synthesis of novel electropolymerizable porphyrins for application as recognition unit in sensors and as active materials in photovoltaic devices. Fullerene derivative synthesis and carbon nanotube modification for application as materials for supercapacitors and photovoltaic devices.

2. Prof. Patrizia Mussini and her team
Electrochemical characterization of spider-like and chiral oligothiophenes for application in the field of chemosensor development and non-linear optics.

3. **Prof. Francesco Sannicolo and his team**
Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Milano, Italy.
http://users2.unimi.it/dpcorind/en/?page_id=202
Design, synthesis and characterization of novel spider-like thiophenes as well as intrinsically chiral oligothiophenes for application in the field of chemosensor development and non-linear optics.

4. **Prof. Alexander Kuhn and his team**
University Bordeaux 1, Bordeaux, France
Preparation of mesoporous polymer films via electrochemical deposition on the colloidal crystal matrices.

5. **Prof. Lothar Dunsh and his team**
http://www.ifw-dresden.de/institutes/iff/org/members/dunsch/
Department of Electrochemistry and Conducting Polymers, Leibniz-Institute of Solid State and Materials Research, Dresden, Germany.
Spectroelectrochemical studies oligothiophene and fullerene derivatives.