Instytut Chemii Fizycznej

   Polskiej Akademii Nauk

 

adres:       ul. Kasprzaka 44/52 

                01-224 Warszawa

 

tel.:          +48 22 3432000

fax/tel.:     +48 22 3433333, 6325276

 

email:        ichf@ichf.edu.pl

WWW:      http://www.ichf.edu.pl/

 

 

 

Warszawa, 30 marca 2012

 

 

 

 

 

 

Nieoczekiwane zachowanie mikrokropel

 

 

            W środowisku fizyków panuje zgodna opinia, że zjawiska związane z przepływem

            laminarnym zostały już dobrze poznane i szczegółowo opisane od strony

            teoretycznej. W Instytucie Chemii Fizycznej PAN w Warszawie zaobserwowano

            jednak, że krople substancji chemicznych, płynące w cieczy nośnej wewnątrz

            kanalików w niektórych układach mikrofluidycznych, nie zawsze zachowują się

            zgodnie z oczekiwaniami.

 

 

Naukowcy z Instytutu Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) w Warszawie odkryli nowe zjawisko związane z dynamiką płynów. Pojawia się ono podczas przepływu drobnych kropel przez niektóre układy mikrofluidyczne. "Zaobserwowany przez naszą grupę efekt jest związany ze zmianami wirów wewnątrz mikrokropelek i na razie nie jest przewidywany przez modele teoretyczne", mówi dr Sławomir Jakieła z IChF PAN. Wyniki badań, realizowanych dzięki grantowi TEAM Fundacji na rzecz Nauki Polskiej, opublikowano właśnie w prestiżowym czasopiśmie fizycznym "Physical Review Letters".

 

Układy mikroprzepływowe to miniaturowe reaktory chemiczne rozmiarów karty kredytowej, a nawet mniejszych. Wewnątrz układów, przez kanaliki o średnicach rzędu dziesiątych lub setnych części milimetra, płynie laminarnie ciecz nośna (najczęściej olej), w której unoszą się mikrokrople właściwych substancji chemicznych.

 

"Za pomocą jednego układu mikroprzepływowego już dziś można przeprowadzić nawet kilkadziesiąt tysięcy różnych reakcji chemicznych dziennie. W przyszłości układy te staną się dla chemii tym, czym dla elektroniki okazały się układy scalone. Jednak zanim zbudujemy urządzenia chemiczne równie rewolucyjne jak krzemowe mikroprocesory, musimy dokładnie poznać wszystkie zjawiska fizyczne zachodzące podczas przepływu mikrokropel", stwierdza dr Jakieła.

 

Przepływy, z którymi spotykamy się na co dzień, są często zdominowane przez bezwładność i turbulencje. Przy małych objętościach, typowych dla układów mikrofluidycznych, przepływ cieczy jest laminarny i rządzą nim efekty związane z lepkością.

 

Prędkość oleju płynącego laminarnie w mikrokanalikach nie jest jednorodna. Najwolniej poruszają się warstwy przy ściankach, najszybciej – te znajdujące się w pobliżu środka kanału. "Jeśli mikrokropla jest wyraŸnie mniejsza od średnicy kanału, może się ulokować w centralnej części przepływu. Jej prędkość jest wtedy nawet dwukrotnie większa od średniej prędkości przepływu oleju. To nic zaskakującego. Podobny efekt obserwujemy choćby w rzekach: przy brzegach nurt jest dużo wolniejszy niż pośrodku", wyjaśnia doktorantka Sylwia Makulska z IChF PAN.

Jeśli dostateczne duża kropla płynie przez kanalik o przekroju kolistym, wypełnia jego całe światło. Prędkość kropli jest wtedy taka sama jak prędkość przepływu oleju. Sytuacja staje się znacznie ciekawsza, gdy kropla znajduje się w kanaliku o przekroju prostokątnym. Wskutek napięcia powierzchniowego mikrokropla pozostaje zaokrąglona. Nie wypełnia więc całego przekroju kanału i w jego narożnikach nadal płynie olej.

 

Zespół z IChF PAN wytwarzał mikrokrople z mieszaniny wody i gliceryny, o różnych stężeniach, a co za tym idzie o różnej lepkości. Płynęły one w oleju (heksadekanie) przez kanał długości 10 cm, o przekroju prostokątnym. Badacze mierzyli prędkość przepływu mikrokropel względem oleju w zależności od ich objętości (długości w mikrokanale), lepkości kropel i oleju oraz prędkości przepływu cieczy nośnej.

 

Gdy krople miały lepkość mniejszą lub porównywalną z lepkością cieczy nośnej, prędkość ich ruchu względem oleju okazała się maleć wraz ze wzrostem długości kropli, lecz tylko w pewnym zakresie. Krople poruszały się najwolniej, gdy ich długość była dwu-, trzykrotnie większa od szerokości kanału. "Minimum prędkości względnej kropli w stosunku do oleju pojawiało się zawsze. Wszystko wydawało się być zgodne z oczekiwaniami teoretyków", mówi Jakieła.

 

Naprawdę ciekawe rzeczy zaczęły się dziać, gdy badacze zaczęli zmieniać prędkość przepływu oleju. Okazało się, że wraz ze wzrostem tej prędkości minimum prędkości względnej kropli względem oleju zanikało. Lecz gdy prędkość oleju dalej zwiększano, minimum pojawiało się ponownie – głębsze i szersze. "Mówiąc prościej: odkryliśmy, że w zależności od prędkości przepływu oleju, kropla tej samej długości może płynąć w jednych warunkach szybciej względem oleju, a w innych wolniej", wyjaśnia Jakieła.

 

Aby sprawdzić, skąd wynika zaskakujące zachowanie mikrokropel, naukowcy z IChF PAN wprowadzili do nich znaczniki fluorescencyjne rozmiaru kilku mikrometrów. Gdy krople przepływały przez mikrokanał, oświetlano je laserem, który pobudzał znaczniki do świecenia. Dzięki temu można było obserwować ruchy płynu wewnątrz kropel.

 

Pomiary ujawniły, że gdy wzrasta prędkość cieczy nośnej, rozkład wirów wewnątrz kropli zaczyna się zmieniać. "Spodziewaliśmy się zmian, ale dotychczasowe teorie sugerowały, że liczba wirów w mikrokroplach będzie tym mniejsza, im szybciej płynie olej. Tymczasem my zaobserwowaliśmy zjawisko odwrotne: im szybciej płynął olej, tym w kropli było więcej wirów. Przyroda kolejny raz sprawiła psikusa teoretykom", stwierdza prof. nzw. dr hab. Piotr Garstecki z IChF PAN.

 

W Instytucie Chemii Fizycznej PAN ruszyły już pierwsze prace zmierzające do wykorzystania nowego zjawiska w procesach związanych z mieszaniem zawartości mikrokropel w układach mikrofluidycznych.

 

Materiał prasowy przygotowany dzięki grantowi NOBLESSE w ramach działania "Potencjał badawczy" 7. Programu Ramowego Unii Europejskiej.

 

Instytut Chemii Fizycznej Polskiej Akademii Nauk (http://www.ichf.edu.pl/) został powołany w 1955 roku jako jeden z pierwszych instytutów chemicznych PAN. Profil naukowy Instytutu jest silnie powiązany z najnowszymi światowymi kierunkami rozwoju chemii fizycznej i fizyki chemicznej. Badania naukowe są prowadzone w 9 zakładach naukowych. Działający w ramach Instytutu Zakład Doświadczalny CHEMIPAN wdraża, produkuje i komercjalizuje specjalistyczne związki chemiczne do zastosowań m.in. w rolnictwie

i farmacji. Instytut publikuje około 200 oryginalnych prac badawczych rocznie.

 

 

 

KONTAKTY DO NAUKOWCÓW:

 

                dr hab. Piotr Garstecki, prof. IChF PAN

                Instytut Chemii Fizycznej Polskiej Akademii Nauk

                tel. +48 22 3432233

                email: garst@ichf.edu.pl

 

                dr Sławomir Jakieła

                Instytut Chemii Fizycznej Polskiej Akademii Nauk

                tel. +48 22 3433231

                email: sjakiela@ichf.edu.pl

POWIĄZANE STRONY WWW:

 

                http://www.ichf.edu.pl/

                Strona Instytutu Chemii Fizycznej Polskiej Akademii Nauk.

 

                http://www.ichf.edu.pl/press/

                Serwis prasowy Instytutu Chemii Fizycznej PAN.

 

 

 

MATERIAŁY GRAFICZNE:

 

IChF120330b_fot01s.jpg                                    HR: http://ichf.edu.pl/press/2012/03/IChF120330b_fot01.jpg

Dr Sławomir Jakieła z Instytutu Chemii Fizycznej PAN w Warszawie podczas pomiaru prędkości przepływu mikrokropel w układzie mikrofluidycznym. (Źródło: IChF PAN, Grzegorz Krzyżewski)

 

IChF120330b_fot02s.jpg                                    HR: http://ichf.edu.pl/press/2012/03/IChF120330b_fot02.jpg

Kropla substancji chemicznej (czerwony) płynąca przez mikrokanał o przekroju prostokątnym nie wypełnia go w całości. Ciecz nośna (niebieski) opływa kroplę wzdłuż narożników kanału. Przekroje poniżej przedstawiają widok kropli wzdłuż osi kanału oraz prostopadle do niej i obrazują, jak zmienia się rozkład wirów wewnątrz kropel wraz ze wzrostem prędkości cieczy nośnej. (Źródło: IChF PAN)

 

 

 

PRACE NAUKOWE:

 

"Discontinuous Transition in a Laminar Fluid Flow: A Change of Flow Topology inside a Droplet Moving in a Micron-Size Channel"; Slawomir Jakiela, Piotr M. Korczyk, Sylwia Makulska, Olgierd Cybulski, Piotr Garstecki; DOI: 10.1103/PhysRevLett.108.134501; http://link.aps.org/doi/10.1103/PhysRevLett.108.134501