Instytut Chemii Fizycznej

   Polskiej Akademii Nauk

 

adres:       ul. Kasprzaka 44/52 

                01-224 Warszawa

 

tel.:          +48 22 3432000

fax/tel.:     +48 22 3433333, 6325276

 

email:        ichf@ichf.edu.pl

WWW:      http://www.ichf.edu.pl/

 

 

 

 

Warszawa, 8 listopada 2010

 

 

 

Elastyczna elektronika: Odkrywamy zasady wytwarzania uporządkowanych warstw polimerów

 

 

            Cienkie jak papier, zwijane w rulon wyświetlacze i inne równie futurystyczne urządzenia nie powstaną bez elektroniki organicznej. Konstruowanie giętkich układów elektronicznych wymaga jednak wiedzy o właściwościach polimerów i warunkach, w jakich zachodzi ich samoorganizacja. Grupie naukowców z Instytutu Chemii Fizycznej PAN we współpracy z pracownikami Politechniki Warszawskiej i Komisariatu d/s Energetyki Atomowej w Grenoble udało się ustalić, w jaki sposób można wytwarzać cienkie warstwy polimerów o wysokim stopniu uporządkowania - kluczowy element w procesie produkcji organicznych układów elektronicznych.

 

Materiały organiczne zmienią oblicze elektroniki. Urządzenia staną się nie tylko tańsze, cieńsze i lżejsze, ale także zyskają cechy niespotykane dotychczas. Wyświetlacze będzie można zwijać w rulon lub wytwarzać z przezroczystych elementów i nanosić bezpośrednio na szyby, na przykład w samochodach. Zanim elastyczna elektronika zdobędzie masowy rynek, należy jednak poznać zasady rządzące powstawaniem cienkich warstw półprzewodników organicznych. Grupa naukowców z Instytutu Chemii Fizycznej Polskiej Akademii Nauk (pod kierunkiem prof. nadzw. Roberta Nowakowskiego) oraz Politechniki Warszawskiej (prof. Małgorzata Zagórska) i Komisariatu d/s Energetyki Atomowej w Grenoble (prof. Adam Proń) dokonała tu istotnego postępu. "Zbadaliśmy, jak w warstwach zmienia się organizacja cząsteczek w zależności od ich długości. Dzięki temu rozumiemy, dlaczego krótsze cząsteczki łączą się w uporządkowane struktury dwuwymiarowe, a bardzo długie cząsteczki tworzą chaotyczne agregacje. Ten ostatni, niekorzystny efekt potrafimy teraz skutecznie eliminować" - mówi prof. nadzw. Robert Nowakowski z Grupy Badawczej Mikroskopii i Spektroskopii Instytutu Chemii Fizycznej PAN (IChF PAN).

 

Cząsteczki organiczne mogą przewodzić prąd równie dobrze jak metale. W metalach chmura elektronów może się jednak poruszać w dowolnym kierunku, podczas gdy nośniki prądu w cząsteczkach organicznych przemieszczają się wzdłuż tzw. sprzężonych wiązań podwójnych. Fakt ten oznacza dużą ruchliwość nośników tylko w jednym kierunku: wzdłuż osi podłużnej cząsteczki. W tej sytuacji poprawę przewodności można otrzymać przez wydłużanie cząsteczek, czyli użycie związków wielkocząsteczkowych - polimerów. Rozwiązanie to ma jednak wadę. Polimery wielkocząsteczkowe znacznie trudniej tworzą uporządkowane warstwy. W rezultacie często układają się przypadkowo, co prowadzi do chaotycznego przemieszczania się nośników prądu (nośnik po przejściu przez długą, zwiniętą w kłębek makrocząsteczkę może się znaleźć niemal w tym samym miejscu warstwy, w którym zaczynał wędrówkę). Rezultatem chaotycznej struktury jest mała ruchliwość nośników prądu. Opisany problem można rozwiązać za pomocą cząsteczek wydłużonych, lecz dostatecznie krótkich, aby wykazywały naturalną skłonność do samoporządkowania, czyli oligomerów. W wyniku wzajemnych oddziaływań takie cząsteczki ustawiają się równolegle do siebie i tworzą rzędy.

 

Obecnie przyjmuje się, że w przyszłości organiczne układy elektroniczne będą zbudowane z uporządkowanych warstw cząsteczek gwarantujących dużą ruchliwość nośników prądu w kierunku określonym dla danego urządzenia. Optymalizacja struktury warstw polimerowych polega na znalezieniu kompromisu między długością łańcucha oligomeru a jego zdolnością do samoorganizacji. "Chemicy z Politechniki Warszawskiej przygotowali nam nowe polimery i oligomery, pochodne tiofenu. Badania strukturalne i mikroskopowe cienkich warstw tych związków wykazały jednak, że są one nieuporządkowane. Podejrzewaliśmy, że nieuporządkowanie to wynika z polidyspersyjności, czyli współistnienia cząsteczek o różnej długości. Zjawisko to występuje prawie we wszystkich polimerach syntetycznych" - tłumaczy prof. Nowakowski. Aby sprawdzić to przypuszczenie, naukowcy z IChF PAN opracowali unikatową metodę rozdziału mieszaniny po polimeryzacji na frakcje cząsteczek o tej samej długości. Wykorzystano w tym celu wysokosprawną chromatografię cieczową i cienkowarstwową. Z tak otrzymanych frakcji wytwarzano następnie na podkładzie grafitowym warstwy grubości jednej cząsteczki i badano je skaningowym mikroskopem tunelowym.

 

Przypuszczenie dotyczące polidyspersyjności okazało się słuszne. Uporządkowanie cząsteczek jest związane z obecnością długich i giętkich grup alkilowych, wprowadzonych do cząsteczki aby zwiększyć jej rozpuszczalność. Najkrótsze cząsteczki tworzą w warstwie dwuwymiarowe struktury wskutek wzajemnego oddziaływania (zazębiania się) grup alkilowych sąsiednich cząsteczek w dwóch prostopadłych kierunkach. Wydłużenie cząsteczki zwiększa liczbę grup alkilowych oddziałujących jedynie w kierunku prostopadłym do jej osi i prowadzi do asymetrii oddziaływań międzycząsteczkowych. Rezultatem jest zmiana typu uporządkowania z dwuwymiarowych wysp obserwowanych dla krótszych oligomerów do jednowymiarowych kolumn tworzonych przez dłuższe oligomery. "Przyczyną chaosu w warstwach okazał się fakt, że wytwarza się je z mieszaniny makrocząsteczek o różnych długościach, z których każda dąży do innego typu uporządkowania" - mówi doktorant Tomasz Jaroch z IChF PAN.

 

Uporządkowanie cząsteczek w warstwie jest konsekwencją ich budowy. Nawet niewielka zmiana w budowie meru (jednostki powtarzalnej, która powielana tworzy łańcuch polimeru lub oligomeru) może wpłynąć na przebieg samoorganizacji. W grupie prof. Małgorzaty Zagórskiej z Politechniki Warszawskiej zsyntetyzowano oligomery z grupami alkilowymi przy innych atomach węgla pierścienia tiofenowego niż w związku badanym pierwotnie. Zmiana powoduje zmniejszenie odległości między grupami alkilowymi w obrębie meru i w konsekwencji zmianę oddziaływań międzycząsteczkowych w warstwie. W tak zsyntetyzowanych związkach nie zaobserwowano niekorzystnych efektów w samoorganizacji: cząsteczki różnej długości tworzyły uporządkowane dwuwymiarowe wyspy. Otrzymane uporządkowanie charakteryzuje się korzystnymi właściwościami półprzewodnikowymi, ponieważ rdzenie oddziałujące bezpośrednio wzdłuż osi podłużnej gwarantują zwiększenie efektywnej ruchliwości nośników ładunku. Naukowcy z IChF PAN potwierdzili eksperymentalnie brak zazębiania grup alkilowych w tym kierunku, demostrując na obrazach mikroskopowych, że możliwe jest przesunięcie pojedynczego oligomeru wewnątrz warstwy. Zazębianie się grup alkilowych wzdłuż osi cząsteczki uniemożliwiłoby taką operację.

 

Wyniki badań mają istotne znaczenie praktyczne, ponieważ pozwalają przewidywać zachowanie oligomerów i polimerów w warstwach, a tym samym otwierają drogę do wytwarzania warstw uporządkowanych, gwarantujących lepszą ruchliwość nośników ładunku w urządzeniach elektroniki organicznej.

 

Instytut Chemii Fizycznej Polskiej Akademii Nauk (http://www.ichf.edu.pl/) został powołany w 1955 roku jako jeden z pierwszych instytutów chemicznych PAN. Profil naukowy Instytutu jest silnie powiązany z najnowszymi światowymi kierunkami rozwoju chemii fizycznej i fizyki chemicznej. Badania naukowe są prowadzone w 9 zakładach naukowych. Działający w ramach Instytutu Zakład Doświadczalny CHEMIPAN wdraża, produkuje i komercjalizuje specjalistyczne związki chemiczne do zastosowań m.in. w rolnictwie

i farmacji. Instytut publikuje około 300 oryginalnych prac badawczych rocznie.

 

 

 

KONTAKTY DO NAUKOWCÓW:

 

                prof. nadzw. dr hab. inż. Robert Nowakowski

                Instytut Chemii Fizycznej Polskiej Akademii Nauk

                tel. +48 22 3433075

                email: robas@ichf.edu.pl

 

                prof. dr hab. Małgorzata Zagórska

                Wydział Chemiczny Politechniki Warszawskiej

                tel. +48 22 2345584

                email: zagorska@ch.pw.edu.pl

 

                prof. dr hab. inż. Adam Proń

                Komisariat d/s Energetyki Atomowej w Grenoble (Atomic Energy Commission, Grenoble)

                tel. +33 4 38784389

                email: adam.pron@cea.fr

 

 

 

POWIĽZANE STRONY WWW:

 

                http://www.ichf.edu.pl/

                Strona Instytutu Chemii Fizycznej Polskiej Akademii Nauk.

 

                http://www.ichf.edu.pl/press/

                Serwis prasowy Instytutu Chemii Fizycznej PAN.

 

 

 

PRACE NAUKOWE:

 

Journal of Physical Chemistry C (2010) 114, 13967-13974.

 

 

 

MATERIAŁY GRAFICZNE:

 

IChF101108b_fot01s.jpg                                    HR: http://ichf.edu.pl/press/2010/11/IChF101108b_fot01.jpg

Badanie samoorganizacji w cienkich warstwach polimerów za pomocą skaningowego mikroskopu tunelowego w Instytucie Chemii Fizycznej PAN w Warszawie. (Źródło: IChF PAN, Grzegorz Krzyżewski)

 

IChF101108b_fot02s.jpg                                    HR: http://ichf.edu.pl/press/2010/11/IChF101108b_fot02.jpg

Doktorant Tomasz Jaroch z Instytutu Chemii Fizycznej PAN w Warszawie podczas przygotowywania skaningowego mikroskopu tunelowego (STM) do badań cienkich warstw polimerów. (Źródło: IChF PAN, Grzegorz Krzyżewski)

 

IChF101108b_fot03s.jpg                                    HR: http://ichf.edu.pl/press/2010/11/IChF101108b_fot03.jpg

Kontrolowane przesuwanie pojedynczych cząsteczek w uporządkowanej warstwie tetramerów 3,3"DOTT. Obrazy z tunelowego mikroskopu skaningowego (STM) pokazują, że pojedyncze skanowanie (w prawą stronę) przemieszcza wybraną cząsteczkę z lewej krawędzi luki na prawą, co prowadzi do zmiany kształtu defektu. Ponieważ po dwóch skanach są przesunięte dwie cząsteczki w różnych rzędach, luka wraca do pierwotnego kształtu, lecz jest przesunięta w kierunku prostopadłym do osi podłużnej cząsteczek. Przemieszczenie jest potwierdzone przez zmianę pozycji luki względem stabilnego defektu warstwy (zaznaczonego żółtym okręgiem). Eksperyment potwierdza brak zazębiania się grup alkilowych w kierunku równoległym do osi podłużnej cząsteczki. Kolory sztuczne. (Źródło: IChF PAN)