Standard Molar Enthalpy of Formation of Hydrated Sodium Cupric Arsenate [NaCuAsO$_4$·1.5H$_2$O(s)]

by Y.-Y. Di1, J.-T. Chen2 and Z.-C. Tan1

1College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
2Department of Chemistry, Shaanxi Educational College, Xi-An 710061, Shaanxi, China
*e-mail: diyouying@126.com

(Received March 15th, 2007; revised manuscript May 14th, 2007)

A new compound (NaCuAsO$_4$·1.5H$_2$O) was synthesized, and its composition was determined by means of the methods of ignition loss-in-weight and chemical analysis. The standard molar enthalpies of dissolution of the mixtures {Na$_3$AsO$_4$·12H$_2$O(s) + CuSO$_4$·5H$_2$O(s)} and {NaCuAsO$_4$·1.5H$_2$O(s) + Na$_2$SO$_4$(s)} in 1.498 mol·dm$^{-3}$ HCl solution at 298.15 K have been determined to be respectively $\Delta H^\circ_{\text{m},1} = (64322 \pm 63)$ J·mol$^{-1}$ and $\Delta H^\circ_{\text{m},2} = -(20558 \pm 25)$ J·mol$^{-1}$ using an isoperibol solution-reaction calorimetry. From these values and other thermodynamic data, the standard molar enthalpy of formation of NaCuAsO$_4$·1.5H$_2$O(s) has been derived: $\Delta H^\circ_{\text{f},1} (\text{NaCuAsO}_4 \cdot 1.5\text{H}_2\text{O}, \text{s}, 298.15 \text{K}) = -(1469.33 \pm 0.65)$ kJ·mol$^{-1}$. In addition, UV/Vis spectra and refractive indexes of solution A and solution A’ were measured to examine the reliability of the designed thermodynamic cycle.

Key words: NaCuAsO$_4$·1.5H$_2$O(s), isoperibol solution-reaction calorimetry, standard molar enthalpy of dissolution, standard molar enthalpy of formation, UV/Vis spectroscopy
Synthesis and Characterization of
\((1E,2E)-N^1,N^2\)-Bis(2-formylphenyl)-\(N'^1,N'^2\)-dihydroxyethanediimidamide and Its Complexes with Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O$_2$

by A. Kakanejadifard*, H. Toosi-Jamali, F. Alboghobeish and A. Yari

*Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
*e-mail: kakanejadi.a@lu.ac.ir

(Received March 5th, 2007; revised manuscript May 17th, 2007)

A new vicinal dioxime ligand \((1E,2E)-N^1,N^2\)-bis(2-formylphenyl)-\(N'^1,N'^2\)-dihydroxyethanediimidamide (H$_2$L) has been synthesized by the reaction of o-anisidine with dichloroglyoxime. Mononuclear complexes with some transition metal ions have been prepared. This compound forms square-planar metal complexes (M(HL)$_2$), with Ni(II), Co(II) and Cu(II), with a metal ligand ratio of 1:2. Also, the tetrahedral complexes of Hg(II), Cd(II) and Zn(II) have been prepared and were found to have a metal ligand ratio of 1:1. The results indicated that the metal ions are coordinated through two N atoms of the ligand, as do most of the vic-dioximes. H$_2$L forms the binuclear nonplanar N, O cooridinating complex [(H$_2$L)(OH)$_2$M$_2$] and a metal ligand ratio of 1:1 with M = U(VI)O$_2$. The composition and structural formula of these complexes were confirmed by elemental analysis, IR, MS, and NMR spectroscopic methods.

Key words: vic-dioxime, \((1E,2E)-N^1,N^2\)-bis(2-formylphenyl)-\(N'^1,N'^2\)-dihydroxyethanediimidamide, transition metal complex
Sol-Gel Synthesis and Superconducting Properties of Bi-2212 High-\(T_c\) Superconductors

by A. Zalga, A. Beganskiene and A. Kareiva

Department of General and Inorganic Chemistry, Vilnius University,
Naugarduko 24, LT-03225 Vilnius, Lithuania
*e-mail: aivaras.kareiva@chf.vu.lt

(Received May 22nd, 2007)

A novel aqueous sol-gel synthesis technique has been refined to prepare heterometalic \((\text{Bi}_{1.75}\text{Pb}_{0.25})\text{Sr}_2\text{CaCu}_2\text{O}_x\) and \((\text{Bi}_{1.8}\text{Pb}_{0.33})\text{Sr}_{1.87}\text{CaCu}_2\text{O}_x\) (Bi-2212) oxides. The formation of Bi-2212 phase depending on synthesis conditions (duration of annealing, stoichiometry of metals) has been estimated. The synthesized products were characterized by powder X-ray diffraction analysis (XRD) and resistivity measurements. It was demonstrated, that the investigated synthesis conditions only slightly influence on the phase purity and superconducting properties of Bi-2212 phase.

Key words: high-\(T_c\) superconductors, Bi-2212, sol-gel synthesis
Preparation of Truncated Triangular Silver Nanoparticles by a Simple and Rapid Method in Aqueous Solution

by S. Ghader¹, M. Manteghian¹*, M. Kokabi¹ and R. Sarraf Mamoory²

¹Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, Jalal-Al-Ahmad Highway, P.O. Box 14115-143, Tehran, Iran
²Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Jalal-Al-Ahmad Highway, P.O. Box 14115-143, Tehran, Iran
*e-mail: manteghi@modares.ac.ir (M. Manteghian)

(Received April 2nd, 2007; revised manuscript May 22nd, 2007)

The paper brings details of a simple method for rapid synthesis of triangular silver nanoparticles and their characterization. The method presented proceeds with a simple reaction in aqueous solution at ambient temperature and nanotriangles are synthesized in a few minutes. The formation of triangular nanoparticles was investigated by UV-VIS spectroscopy. Transmission electron microscopy (TEM) images of nanoparticles show that resulting triangles are truncated. The concentration of reactants and pH were found to have influence on the shape of resulting nanoparticles. These results indicate that hydrazine and citrate are necessary for formation of triangular nanoparticles.

Key words: triangular silver nanoparticles, aqueous solution, citrate, hydrazine
Hydrothermal Synthesis, Structure Characterization of a New Mixed Mo/V Metal-Oxygen Cluster Compound: [Co(phen)$_3$]$_2$[HPMo$_4$Mo$_4$V$_6$M$_2$O$_4$]$_4$·4H$_2$O, (M = 0.78MoV + 0.22VIV)

by Y.-H. Sun1,3, X.-P. Li3, D.H. Sun3, L. Niu1 and J.-Q. Xu2

1State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
*e-mail: lniu@ciac.jl.cn
2College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130023, P.R. China
3Department of Chemistry, Baicheng Teacher’s College, Baicheng, Jilin, 137000, P.R. China

(Received March 29th, 2007; revised manuscript May 31st, 2007)

A new polyoxometalate [Co(phen)$_3$]$_2$[HPMo$_4$Mo$_4$V$_6$M$_2$O$_4$]$_4$·4H$_2$O (M = 0.78MoV + 0.22VIV) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group $P\overline{1}$ with $a = 12.0953(7)$ Å, $b = 14.0182(6)$ Å, $c = 14.6468(7)$ Å, $\alpha = 105.134(2)$, $\beta = 91.841(3)$, $\gamma = 91.401(2)$, $Z = 1$, and R_1 (wR$_2$) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Keggin with phosphorus-centered polyoxoanions [PMo$_8$V$_6$M$_2$O$_4$]$^{5-}$, [Co(phen)$_3$]$^{3+}$ cations and linked through hydrogen bonds and π-π stacking interaction into three-dimensional supramolecular framework. A study of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.

Key words: hydrothermal synthesis, polyoxometalate, crystal structure, transition metal, cobalt
Solid-phase Synthesis and Self-assembly Formation of Tyrocidines

by Y. Ding, C.-G. Qin*, W.-N. Niu, Y. Li and R.-J. Zhang

Faculty of Life Science, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

*e-mail: qinchg@nwpu.edu.cn

(Received March 29th, 2007; revised manuscript May 22nd, 2007)

A facile and efficient method was applied for parallel total synthesis of natural cyclic decapeptides, tyrocidine A-E, on safty-catch resin. Synthetic products were equally active as the natural products isolated from the bacterial source and found to possess similar bacterial selectivity as other members in the amphipathic antimicrobial cyclic decapeptide family. At the same time, the self-assembling nanotubes of them were observed under a transmission electronic microscopy.

Key words: solid-phase synthesis, cyclic decapeptide, antibiotics, bionanomaterial
Synthesis of Silylated Alkylboronic Acids and Esters via Hydroboration of Allylic and Vinlyc Trimethylsilanes

by J. Cytarska1, K. Kaczanowska2 and M. Zaidlewicz2

1Faculty of Pharmacy, Nicolaus Copernicus University, 13-15 Jagiellońska Street, 85-067 Bydgoszcz, Poland
2Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Toruń, Poland
*e-mail: zaidlevi@chem.uni.torun.pl

(Received May 24th, 2007)

Representative allylic trimethylsilanes and isopropenyltrimethylsilane were hydrobulated with dichloroborane, and the products were transformed into the corresponding β- or γ-trimethylsilylboronates. Synthesis of 2-trimethylsilylethyleneboric acid and its diethyl ester via hydroboration of trimethylvinylsilane with diisopinocampheylborane, followed by liberation of α-pinene is described.

Key words: trimethylsilylalkylboronic acids, trimethylsilylalkylboronates, dichloroorganoboranes, dichloroborane, diisopinocampheylborane
Expedient Synthesis of Glycidonitriles by Darzens Condensation of α-Halogenonitriles with Aldehydes and Ketones

by A. Jończyk* and A. Gadaj

War saw Uni ver sity of Tech nol ogy, Faculty of Chem is try, Koszykowa St. 75, 00-662 War saw, Poland
*e-mail: anjon@ch.pw.edu.pl

(Re ceived May 29th, 2007)

Chloroacetonitrile (1), α-halogenopropionitriles 4, and α-chlorophenylacetonitrile (6) react with aldehydes 2a,b,h–o and ketones 2c–g,p–t in the presence of solid NaOH in THF or DME, without any added catalyst, affording substituted glycidonitriles 3a–t, 5a, e–g,r,s and 7a,b,i,j,u,v, respectively (Darzens condensation). The glycidonitriles 3a–h, prepared from 1 and carbonyl compounds 2a–h, are obtained in high yields, exceeding those reported in the literature (Table 5). Expedient results of the reactions studied are due to increased reactivity of anions with Na⁺ as counterion in ethereal solvents. Investigation of the concentration of NaOH and the carbanion of diphenylacetonitrile in selected solvents reveals that ethereal solvents may increase the solubility of the anions participating in Darzens condensation.

Key words: Darzens condensation, solid-liquid two-phase system, uncatalyzed reactions
A Study on the Electrochemical and Structural Properties of a Schiff Base SAM on Au(111) Surface

by D.-S. Kong*, K.-Q. Gu, Y.-Y. Feng and M. Qin

Department of Chemistry, Qufu Normal University, Qufu, Shandong 273165, P. R. China
*e-mail: kongdscn@eyou.com

(Received January 2nd, 2007; revised manuscript April 16th, 2007)

The electrochemical and structural properties of Schiff base V-hp self-assembled monolayer (SAM) on Au(111) surface have been studied using electrochemical technique and electrochemical scanning tunneling microscopy (ECSTM) in 0.1 M HClO₄ solution. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements revealed that the adlayer of V-hp on Au(111) surface inhibits the oxidation of Au and reduces the surface double-layer capacitance. The electronic charges for V-hp-SAM covered Au(111) electrode, resulting from capacitive charging and discharging process involved in the double-layer potential region, become one or more orders of magnitude lower than that for bare Au(111). STM investigation demonstrated that V-hp molecules can adsorb with a flat-lying orientation on Au(111) and formed a long-range two-dimensional ordered SAM with a \((2\sqrt{3} \times \sqrt{2}) \) adlattice symmetry structure. A model structure with one molecule per unit cell was proposed, which yields a surface concentration of \(1.28 \times 10^{-10} \text{ mol/cm}^2 \).

Key words: Schiff base, Au(111), molecular adsorption, SAM
Separation of Organic Species from Wastewater Using a Polyol Supported Liquid Membrane

by W. Ashraf and A. Bukhari

1Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhaharan 31261, Saudi Arabia
2Center for Environment & Water, Research Institute, King Fahd University of Petroleum & Minerals, Dhaharan 31261, Saudi Arabia

(Received September 21st, 2006; revised manuscript May 7th, 2007)

This paper examines the application of supported liquid membrane for the removal of organic compounds in the aqueous waste effluents. Polypropylene glycol was employed as carrier mounted on PTFE supports. It has been demonstrated that polyols act as efficient carrier for selective removal of organic compounds having an acidic –OH group. Mass transfer coefficient increased when the number of carbon atoms increased from 4 to 6. A correlation between pKₐ, pH and flux of permeating species has been demonstrated. Aromatic compounds showed higher transport rates as compared to similar aliphatic compounds. Effect of temperature on the transport rates has been studied. It has been shown that a mock waste solution can be transported up to >90% under the conditions studied.

Key words: SLM, polyol, phenols, carboxylic acids
Compressibility Data and Virial Coefficients for Helium – Nitrogen Mixtures

by Ö. Korfali and B. Parlak

Faculty of Engineering and Technology, Galatasaray University,
Çırağan Caddesi, No: 36, Ortaköy 34357, Istanbul, Turkey, *e-mail: dkorfali@yahoo.com

(Received February 26th, 2007; revised manuscript May 8th, 2007)

A detailed experimental study of the pressure and density of He – N₂ mixtures at 0°C, 25.0°C and 50.0°C is reported. The pressures are measured with a dead-weight tester. The densities are determined from knowledge of the precise volume and weight measurement of the mixtures. Statistical analysis of the experimental data yielded very precise values for the second and third density virial coefficients. Experimentally determined virial coefficients are compared with those of the literature. Unlike interaction second virial coefficients, B₁₂, are determined from the mixture virial coefficients by using the like interaction virial coefficients, B₁₁ and B₂₂, of the pure components. The deduced B₁₂ values agree very well with those computed from potential functions with quantum corrections.

Key words: He – N₂ mixtures, second virial coefficient, third virial coefficient
The Mechanism and Kinetics of the Reaction of ClONO$_2$ with Cl$^-$

by S.-M. Chi1, N. Wang1, N. Xu1, W.-Y. Xin1, S.-C. Xu1* and G.-B. Li2

1Key Laboratory of Education Ministry in Medicinal Chemistry for Natural Resource, College of Chemistry, Laboratory on the Origin of Life, Yunnan University, Kunming 650091, China
*e-mail: sichuan@ynu.edu.cn

2College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China

(Received November 17th, 2006; revised manuscript May 21st, 2007)

Three original three-dimensional Potential Energy Surfaces (PESes) of the reaction have been obtained by Density Functional Theory calculation using the 6-311+G(d) basis to prove an assumption that the reaction of ClONO$_2$ + Cl$^-$ \rightarrow NO$_3^-$ + Cl$_2$ in a gas phase is built up of two simpler reactions: ClONO$_2$ + Cl$^-$ \rightarrow (O$_2$NOClCl)$^-$ and (O$_2$NOClCl)$^-$ \rightarrow NO$_3^-$ + Cl$_2$. The PESes indicate that the intermediate compound (O$_2$NOClCl)$^-$ called Potential Well Compound (PWC) is trapped by a potential energy well of -13.2 kcal/mol deep. The (O$_2$NOClCl)$^-$ PWC in a gas phase is a stable compound at low temperatures and will be examined in the low-temperature infrared spectra. The decomposition of (O$_2$NOClCl)$^-$ in a gas phase is dominated by its dynamic effects, and its kinetics is predicted in the present work. In heterogeneous chemistry however, the (O$_2$NOClCl)$^-$ PWC cannot be stable even at \sim180 K, due to H$_2$O solvation, leading to decomposition of the PWC. Solvation mechanism for the total reaction has been suggested in this paper.

Key words: chlorine nitrate, chloride ion, potential energy well, potential well compound, mechanism, kinetics, solvation
Keto-enol tautomerism for the substrate (pyruvate) of lactate dehydrogenase (LDH) and amide-iminol tautomerism for its inhibitor (oxamate) were studied at the DFT(B3LYP)/6-31++G(d,p) level. Both anions (and also both radicals) prefer the C=O forms, i.e. the keto and amide form, respectively. The OH forms (enolpyruvate and iminoloxamate) have higher Gibbs free energies. Their amounts in the tautomeric mixtures are larger than 0.01% for anions and lower than 0.001% for radicals. π-Electron delocalization for OCO fragments is greater than that for XCO fragments for both anions and radicals.

Key words: prototropic tautomerism, pyruvate-enolpyruvate, oxamate-iminoloxamate, anions, radicals, π-electron delocalization, DFT
Investigation on the Hydrogen Bonding Interaction of Complexes of 2-Butanimine with Water

by H. Fu¹, X.M. Zhou¹, C.Y. Jiang¹ and Z.Y. Zhou²*

¹College of Chemistry & Chemical Engineering, China University of Petroleum, Shangdong, DongYing, 257061, People’s Republic of China
²Department of Chemistry, Qufu Normal University, Shandong, Qufu, 273165, and State Key Laboratory Crystal Materials, Shandong University, Shandong, Jinan, 250100, People’s Republic of China, *e-mail: zhengyu@mail.qfnu.edu.cn

(Received December 15th, 2006; revised manuscript June 18th, 2007)

The hydrogen bonding of 1:1 complexes formed between 2-butanimine and water has been investigated using DFT and MP2 methods at varied basis set levels from 6-311G to 6-311++G(d,p). Four reasonable geometries were considered with the global minimum being a cyclic double-hydrogen bonded structure. The optimized geometric parameters and interaction energies for various isomers at different levels were estimated. The IR intensities and vibrational frequency shifts are reported. The solvent effects on the geometries of the complex have also been investigated using SCRF calculations at the B3LYP/6-311++G(d,p) level. The results indicate that the polarity of the solvent has played an important role on the structures and the relative stabilities of different isomers.

Key words: 2-butanimine, hydrogen bonding, water, complexes

This investigation performs three quantum chemical calculations to determine an unrealizable profile of the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) unimolecular decomposition. First, the bonding energies of HMX and its corresponding decomposition species were calculated using the differential overlap (INDO) program, which identifies the weakest bonding site for reference and determines the site of easiest cleavage. Second, the molecular energies of all species were estimated by performing density-functional theory (DFT) calculations, yielding an accurate enthalpy of formation following calibration according to a five-parametric equation. Finally, all decomposition transition states were sought using Quasi-Newton and Synchronous Transit approaches (QST3 procedure). Computational results reveal that the activation energy of direct cis-form HONO elimination is lower than that of direct trans-form HONO elimination and that of the two-stage elimination of two forms of HONO (N–N bond fission combined with C–H bond breaking) in the initial decomposition step, which are 234.7 kJ/mol and 147.9–171.4 kJ/mol, respectively.

Key words: decomposition route, INDO program, parametric equation, QST3 procedure