In recent years, internally Sn–N coordinated organotin hydrides have found an application in organic syntheses, which involve radical chain reactions. Unique reactivity of such hydrides suggests the potential of intramolecular coordination for the control of radical reactions. When the tin hydrides are used in the presence of Lewis acids single-enatiomer outcomes are accessible. This opens a new aspect of free radical chemistry. The intramolecular Sn–N coordination enhances also nucleophilic character of the tin hydrides in reduction of ketones under mild reaction conditions. The occurrence of intramolecular interaction between the nitrogen and tin atoms can be additionally based on the changes in the characteristic values of the 1H, 13C, 15N and $^{117/119}$Sn NMR parameters and their interrelations.

Key words: tin hydrides, radicals, reduction, stereoselection, Sn–N coordination, NMR spectroscopy
Seven Membered Ring Sugars: A Decade Update
by Z. Pakulski

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warszawa, Poland

(Received February 22nd, 2006; revised manuscript March 27th, 2006)

Chemical synthesis of septanoses (seven membered ring sugars) and oligosaccharides containing septanosyl residue, the role of seven membered ring sugars as intermediate compounds, conformation of the septanose ring, and the biological activity of septanoses are discussed. This review covers the literature published from 1995 till 2005.

Key words: septanoses, seven membered ring sugars, synthesis, conformation, biological activity
Two new μ-oxamido-bridged copper(II)-chromium(III) heterotetranuclear complexes formulated as [Cu₃(dmoxae)₃Cr](ClO₄)₃ (1) and [Cu₃(dmoxpn)₃Cr](ClO₄)₃ (2), where dmoxae and dmoxpn represent N,N- bis[2-(dimethylamino)ethyl]oxamido and N,N-bis[3-(dimethylamino)propyl]oxamido dianions, respectively, have been synthesized and characterized by the elemental analyses, spectroscopic (IR, UV, ESR) studies, magnetic moments (at room-temperature) and by molar conductivity measurements. It is proposed that these complexes have oxamido-bridged structures consisting of three copper(II) ions and a chromium(III) ion, in which the chromium(III) ion has an octahedral environment and the three copper(II) ions have a square-planar environment. The two heterotetranuclear complexes were further characterized by variable-temperature magnetization (3–300 K) measurements and the magnetic data have been used to deduce the indicated heterotetranuclear structure. The results derived from least-squares fit of the experimental data have confirmed that the operation of a ferromagnetic interaction between the adjacent copper(II) and chromium(III) ions occurs through the oxamido-bridge within each molecule. On the basis of the spin Hamiltonian operator, the magnetic analyses were carried out for the two copper(II)-chromium(III) heterotetranuclear complexes and the spin-coupling constants (J) were evaluated as +9.28 cm⁻¹ for (1) and +9.63 cm⁻¹ for (2). The influence of the symmetry of the magnetic orbitals on the nature of the magnetic interaction between the paramagnetic centers is preliminary discussed.

Key words: μ-oxamido-bridge, copper(II), chromium(III), heterotetranuclear complexes, ferromagnetic interaction
Synthesis and UV-vis Study of a New Strongly Solvatochromic Merocyanine-like Dye with Modified Donor Part
by M.J. Sawicka, J.A. Soroka, E.K. Wróblewska and I.K. Zawadzka

Section of Instrumental Analysis, Institute of Chemistry and Environmental Protection, Szczecin University of Technology, Piastów Ave. 42, PL 71-065 Szczecin, Poland

(Received November 24th, 2005; revised manuscript March 13th, 2006)

The new solvatochromic dye, deprotonated 5-(6-hydroxynaphthyl-2)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium perchlorate, was synthesized and studied in numerous solvents differing in polarity. The interpretation of the obtained results was made on the basis of VBHB model. The comparison with a dye of shorter distance between donor and acceptor parts indicated that the new dye is the best of all known solvatochromic merocyanines, comparable with Reichardt-Dimroth betaine.

Key words: solvatochromic dye, merocyanine, solvatochromic effect, VBHB model
Esters of \textit{p}-Nitrophenol in Synthesis of 1-\textit{N}-Monoamide and 1,7-Bis-\textit{N},\textit{N}’-amide Derivatives of 1,4,7,10-Tetraazacyclododecane

by A. Skwierawska

Department of Chemistry, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-952 Gdańsk, Poland

(Received October 21st, 2005; revised manuscript March 21st, 2006)

The efficient synthesis of \textit{N}-monoamide and bis-\textit{N},\textit{N}-amide-1,4,7,10-tetraazacyclododecanes is reported.

\textbf{Key words:} cyclen, active esters, acylation
Chemoselectivity of the [2+3]-Cycloaddition of Thiocarbonyl Ylides with 5-Benzylidene-3-phenylrhodanine

by M.S. Seyfried¹, A. Linden¹, G. Mlostoñ² and H. Heimgartner¹

¹Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
²Section of Heteroorganic Compounds, University of Łódź, Narutowicza 68, PL-90-136 Łódź, Poland

(Received March 27th, 2006)

Reactions of three different thiocarbonyl S-methylides, generated from thiobenzophenone (2), 2,2,4,4-tetramethyl-3-thioxocyclobutanone (3), and adamantanethione (8), respectively, and diazomethane, with 5-benzylidene-3-phenylrhodanine (12) were carried out. The aromatic thiocarbonyl ylide 1a adds chemoselectively to the C,C-double bond, but the spirocyclic 1,3-dithiolane 18, i.e. the [2+3]-cycloadduct with the C=S group of 12, was also formed as a minor product. In the cases of the aliphatic thiocarbonyl ylides 6 and 20, the [2+3]-cycloaddition occurred at the exocyclic C,C-double bond exclusively to give the spirocyclic tetrahydrothiophene derivatives 23 and 21, respectively. A smooth acid-catalyzed decomposition of 18 yielded the 2-diphenylmethylidene derivative 19. The formation of product 24, which was obtained in the reaction of the sterically congested ylide 6 with 12, is explained by a 1,4-H-shift in an intermediate zwitterionic adduct. The structures of the tetrahydrothiophenes 17, 21 and 23, as well as that of 24, were established by X-ray crystallography.

Key words: thiocarbonyl ylides, 1,3-dipolar cycloaddition, rhodamine, 2,5-dihydro-1,3,4-thiadiazoles, crystal structure
Oxidation of a series of aromatic and heteroaromatic benzylic alcohols with molecular iodine in tert-butanol in the presence of potassium carbonate has been studied. Oxidation of most benzylic alcohols affords the corresponding aldehydes in reasonable yields. The reaction has been shown to be compatible with amino, formyl, methylthio groups and thiophene ring in the molecule. Oxidation of the electron-poor benzylic alcohols such as nitrobenzyl alcohols and (benzimidazol-2-yl) methanol results in the formation of the corresponding dimeric esters.

Key words: benzylic alcohols, oxidation, molecular iodine, aldehydes, dimeric esters
Characterization, Crystal Structure, and Solution Studies of a Proton Transfer Compound Obtained from 2,6-Pyridinedicarboxylic Acid and 1,4,10,13-Tetraoxa-7,16-diazacyclooctadecane

by A. Moghimi1, V. Lippolis2, H. Aghabozorg1*, A. Shokrollahi3, M. Shamsipur5, S. Sheshmani6 and A.J. Blake7

1Department of Chemistry, Imam Hossein University, Tehran, Iran
2Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, Monserrato, Italy
3Department of Chemistry, Teacher Training University, Tehran, Iran
4Department of Chemistry, Yasouj University, Yasouj, Iran
5Department of Chemistry, Razi University, Kermanshah, Iran
6Department of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran
7School of Chemistry, The University of Nottingham, University Park, Nottingham, UK

(Received December 19th, 2005; revised manuscript March 20th, 2006)

The proton transfer compound, (DA18C6H2)(pydcH)2·0.25H2O, has been prepared from the reaction between 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, diaza-18-crown-6 (DA18C6), and 2,6-pyridinedicarboxylic acid, dipicolinic acid (pydcH2). The characterization was performed using 1H and 13C NMR, IR spectroscopy and single crystal X-ray diffraction analysis. The asymmetric unit consists of one (DA18C6H2)2+ cation adopting a sigmoidal conformation which interacts with two (pydcH)– anions via hydrogen bonds involving the protonated amine groups of the diazacrown ether. –COOH···–OOC– head-to-tail hydrogen bonds generate 2D undulating layers along [100] and [001] in the crystal lattice. The protonation constants of DA18C6 and pydcH2 and equilibrium constants for the reaction of the two reactants were determined by potentiometric pH titration. The solution studies supported the formation also in solution of (DA18C6H2)(pydcH)2 as the most abundant species at pH = 3.4.

Key words: 2,6-pyridinedicarboxylic acid, diaza-18-crown-6, hydrogen bonds, crystal structure, solution studies
Selective Oxidation and Oxidative Dehydrogenation of Isobutane on Mo-V-Te-P Mixed Metal Oxide Catalysts

by J.Q. Guan, G.J. Wang, S.B. Jing, Z.L. Wang and Q.B. Kan

College of Chemistry, Jilin University, JieFang Road 2519, Changchun, 130023, China

(Received December 19th, 2005; revised manuscript March 20th, 2006)

MoV_{0.3}Te_{0.23}P_{x} (x = 0–0.5) catalysts have been prepared and tested in the selective oxidation of isobutane. Among them, MoV_{0.3}Te_{0.23}P_{0.3} catalyses the direct oxidation of isobutane to methacrolein and methacrylic acid with 33% selectivity, and a total dehydrogenation (olefin plus methacrolein and methacrylic acid) selectivity up to 63% at 400°C.

Key words: isobutane, isobutylene, selective oxidation, mixed metal oxides catalysts
Hydroxylation of Alkanes Using H$_2$O$_2$ or tert-BuOOH Catalyzed by Silica-based Fe(III) Interphase Catalysts

by Y.-L. Luo1, L. Zhang2,3, M.-H. Zong1, S. Ménage3 and M. Fontecave3

1School of Biological Sciences and Biotechnology, and 2Department of Chemical Engineering, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, P. R. China
3Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, Université Joseph Fourier/DBMS/CEA, UMR CNRS 5047 Grenoble, 17 rue des Martyrs, 38054 Grenoble Cédex 9, France

(Received September 19th, 2005; revised manuscript March 21st, 2006)

Two novel silica-based organic-inorganic hybrid (interphase) Fe(III) catalysts have been successfully prepared by the flexible ligand method, characterized and applied to the efficient catalytic oxidation of various types of substrates using 30% H$_2$O$_2$ or tert-BuOOH under mild conditions. The catalysts can be recovered and reused for four reaction cycles with total turnover numbers being about 29 using cyclohexene as the substrate. The mechanism for the O–O bond cleavage was proposed based on the results in combination with previous experimental results.

Key words: methane monooxygenase, biomimetic hydroxylation, hydrogen peroxide, interphase catalyst
Synthesis and Characterization of Cr(III), Fe(III) and Co(II) Complexes of 2,3,13,14-Tetra(ethyl/p-tolyl)-1,4,12,15-tetraazacyclodocosa-1,3,12,14-tetraene

by A. Upadhyay and R.N. Prasad

Department of Chemistry, University of Rajasthan, Jaipur-302004, India

(Received July 5th, 2005; revised manuscript March 6th, 2006)
The Effect of 2,2'-Bipyridyne (1,10-Phenanthroline) on the Stability of Co(II), Ni(II) and Cu(II) Complexes with Acetic, Methoxyacetic, Phenylacetic and Cyclohexylacetic Acids

by E. John, R. Czoik and M. Pędras

(Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland)

(Received April 25th, 2005; revised manuscript April 10th, 2006)