Synthesis and Magnetic Analysis of μ-Oxamido-Bridged Cu(II)–Fe(II) Heterodinuclear Complexes

by Y.-T. Li1,2, G.-L. Zhang1, C.-W. Yan1, J.-M. Dou2 and D.-Q. Wang2

1Marine Drug & Food Institute, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, P. R. China
2Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China

(Received January 7th, 2005; revised manuscript March 21st, 2005)

The strategy of “complex as ligand” allowed us to synthesize two new μ-oxamido-bridged heterodinuclear complexes identified as [Cu(bmap)Fe(bpy)]SO$_4$ (1) and [Cu(bmap)Fe(phen)]SO$_4$ (2), where bmap represents the N,N'-bis(2-methyl-2-amino-propyl)oxamido dianion; bpy and phen stand for 2,2'-bipyridine and 1,10-phenanthroline, respectively. These complexes are the first examples of copper(II)–iron(II) species bridged by bmap groups. Based on elemental analyses, IR and electronic spectra studies, magnetic moments at room temperature and molar conductivity measurements, these complexes are proposed to have an extended oxamido-bridged structure consisting of planar copper(II) and octahedral iron(II) ions. The two heterodinuclear complexes have been further characterized by variable temperature magnetic susceptibility (4.2–300 K) and the observed data were least-squares fitted to the susceptibility equation derived from the spin Hamiltonian including single-ion zero-field interaction for the iron(II) ion, $H = -2JS_1S_2 - D(S_1^2 + S_2^2)$, giving the exchange integrals $J = -18.9$ cm$^{-1}$ for (1) and $J = -20.1$ cm$^{-1}$ for (2). These results indicated that the spin coupling between the adjacent copper(II) and iron(II) ions through the oxamido-bridge in both complexes (1) and (2) is antiferromagnetic. The influence of methyl substituents in the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.

Key words: μ-oxamido-bridge, copper(II), iron(II), heterodinuclear complexes, magnetic properties
Synthesis and Magnetism of Ferromagnetically Coupled [Cu$_3^{II}$Cr$_{III}^{III}$] Heterotetranuclear Complexes with N,N'-Bis(amo-noalkyl)oxamidato-copper(II)

by Y.-T. Li1, C.-W. Yan2, G.-Y. Xu3, G.-L. Zhang1 and W. Sun1

1Marine Drug & Food Institute, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, P. R. China
2College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, P. R. China
3College of Chemical Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China

(Received February 17th, 2005; revised manuscript April 26th, 2005)

The strategy of “complex as ligand” allowed us to synthesize two new μ-oxamido-bridged copper(II)–chromium(III) heterotetranuclear complexes formulated as [Cu$_3$(oxae)$_3$Cr](ClO$_4$)$_3$ (1) and [Cu$_3$(oxpn)$_3$Cr](ClO$_4$)$_3$ (2), where oxae and oxpn represent N,N'-bis(2-aminoethyl)oxamido and N,N'-bis(3-aminopropyl)oxamido dianions, respectively. Based on elemental analyses, molar conductivity and magnetic moment (room-temperature) measurements, IR, ESR and electronic spectral studies, these complexes are proposed to have oxamido-bridged structures consisting of three copper(II) ions and a chromium(III) ion, in which the chromium(III) ion has an octahedral environment and the three copper(II) ions have a square-planar environment. The two heterotetranuclear complexes were further characterized by variable-temperature magnetic susceptibility (3~300 K) measurements and the magnetic data have been used to deduce the indicated heterotetranuclear structure. The results derived from least-squares fit of the experimental data have confirmed the ferromagnetic interaction between the adjacent copper(II) and chromium(III) ions through the oxamido-bridge within each molecule. On the basis of the spin Hamiltonian operator, $\hat{H} = -2J(S_{Cu}S_{Cr} + S_{Cu}S_{Cr} + S_{Cu}S_{Cr})$, the magnetic analyses were carried out for the two copper(II)–chromium(III) heterotetranuclear complexes and the spin-coupling constants (J) were evaluated as $+13.98$ cm$^{-1}$ for (1) and $+12.65$ cm$^{-1}$ for (2). The results indicate that the bridging oxamido should be able to transmit ferromagnetic interaction in the strict orthogonality [Cu$_3^{II}$Cr$_{III}^{III}$] system. The influence of the symmetry of the magnetic orbitals on the nature of the magnetic interaction between the paramagnetic centers is preliminarily discussed.

Key words: μ-oxamido-bridge, copper(II), chromium(III), heterotetranuclear complexes, magnetic properties, ferromagnetic coupling
Synthesis and Magnetism of Cu(II)–Ln(III)–Cu(II) (Ln = La, Nd, Gd, Tb, Ho, Er) Trinuclear Complexes Bridged by N₂N'-Bis[3-(dimethylamino)propyl]oxamido

by C.-W. Yan¹, L.-J. Li¹, Y.-T. Li², G.-L. Zhang² and W. Sun¹

¹College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, P. R. China
²Marine Drug & Food Institute, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, P. R. China

(Received April 6th, 2005; revised manuscript June 1st, 2005)

Six new μ-oxamido-bridged copper(II)–lanthanide(III)–copper(II) heterotrinuclear complexes described by the overall formula Cu₂(dmoxpn)₂Ln(NO₃)₃ [Ln = La, Nd, Gd, Tb, Ho, Er; dmoxpn = N₂N'-bis[3-(dimethylamino)propyl]oxamido dianions] have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectral studies. The variable-temperature susceptibility (4.2–300 K), ESR measurements, and studies of the Cu₂(dmoxpn)₂Gd(NO₃)₃ complex have revealed that the central gadolinium(III) and terminal copper(II) ions are ferromagnetically coupled with the exchange integral J_{Cu-Gd} = +6.85 cm⁻¹, while an antiferromagnetic coupling is detected between the terminal copper(II) ions with J_{Cu-Cu} = −0.27 cm⁻¹, on the basis of the spin Hamiltonian operator \[\mathcal{H} = -2J(\hat{S}_{Cu1} \cdot \hat{S}_{Cu2} + \hat{S}_{Gd} \cdot \hat{S}_{Gd}) \] A plausible mechanism for the ferromagnetic coupling between copper(II) and gadolinium(III) is discussed in terms of spin polarization.

Key words: μ-oxamido-bridge, copper(II), lanthanide(III), heterotrinuclear complexes, magnetism
Problems connected with the long version of atom-based Periodic System of chemical elements with arbitrary 1–18 group numbering recommended by IUPAC are discussed. Introducing the atomic cores of elements instead of atoms to the Periodic Table enables to define unequivocally the Periodic System as a triparametric classification resulting from three numbers: the number of core electron shells \(n \), the core charge \(q \), and the number of valence subshells \(l \). The core based periodic chart is free of any imperfections and limitations of the atom based system and it enables reasonable numeration of groups and periods according to the \(nql \) parameters.

Key words: Periodic System of elements, atomic core, elements classification
Coordination States and Apparent Molar Volumes of Cobalt(II) Perchlorate and Cobalt(II) Chloride in N,N-Diethylacetamide Solutions at 25°C

by P. Lipski, R. Pastewski and W. Grzybkowski

Chemical Faculty, Gdańsk University of Technology, 80-952 Gdańsk, Narutowicza 11/12, Poland

(Received December 17th, 2004; revised manuscript June 14th, 2005)

Visible absorption spectra and apparent molar volumes for CoCl₂ and Co(ClO₄)₂ in N,N-diethylacetamide (DEA) as well as the spectra for the Co(ClO₄)₂ – CoCl₂ – DEA and CoCl₂ – LiCl – DEA systems were studied. The results indicate formation of the electrically neutral CoCl₂(DEA)₂ complex, being the predominating chloro-complex of cobalt(II) in the solutions of CoCl₂ in DEA. The formation constants of the consecutive chloro-complexes of cobalt(II) have been determined: logK₁ = 5.28(±0.10), logK₂ = 6.10(±0.08), logK₃ = 3.31(±0.05) and logK₄ = 0.74(±0.05).

Key words: cobalt(II) perchlorate, cobalt(II) chloride, N,N-diethylacetamide, DEA, electronic absorption spectra, apparent molar volumes, complex formation, formation constant
Determination of Thermodynamic and Kinetic Parameters of Inclusion Complex Formation of 2-Mercaptobenzothiazole with β-Cyclodextrin
by F. Zha¹,² and R.H. Lu¹,³

¹Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
²College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
³Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China

(Received September 27th, 2004; revised manuscript June 27th, 2005)

The inclusion of 2-mercaptopbenzothiazole by β-cyclodextrin was studied by spectrophotometry. The absorbance of inclusion complex decreased when β-cyclodextrin was dissolved in water and the complex was diluted with ethanol. The same result was obtained by using water as the solvent and diluent. The absorbance decrease in ethanol was greater than that in water. The absorbance increased with the increase of the content of β-cyclodextrin when DMSO was used both as the solvent and diluent. Although the absorbance of the complex was higher than that of the guest when β-cyclodextrin was dissolved in DMSO and inclusion complex was diluted with water, the absorption decreased when the concentration of β-cyclodextrin was increased. Stability constants of the inclusion complex in different solvents changed in the order \(K_{\text{DMSO}} < K_{\text{H}_2\text{O}} < K_{\text{EtOH}} \). Further studies showed that formation of the inclusion complex was spontaneous and exothermic. Thermodynamic parameters and the rate constants of the inclusion reaction were determined.

Key words: β-cyclodextrin, 2-mercaptopbenzothiazole, inclusion complexes, thermodynamics, kinetics
Lipoxygenase Inhibiting Steroidal Glycosides and Naphthene Derivatives from *Haloxylon salicornicum*

by S. Ferheen, E. Ahmed, N. Afza, A. Malik, S.A. Nawaz and M.I. Choudhary

1International Center for Chemical Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan
2Pharmaceutical Research Centre, PCSIR Laboratories Karachi Complex, Karachi-75280, Pakistan

(Received April 12th, 2005)

Allostigmasterol glycosides 1 and 2 and monocyclic naphthene derivatives 3 and 4 have been isolated from methanolic extract of *Haloxylon salicornicum* and their structures elucidated through spectroscopy. Triacontanoic acid 5, ergosterol peroxide 6 and lupeol 7 were also obtained for the first time from this species. Both 1 and 2 showed moderate lipoxygenase inhibiting activity.

Key words: *Haloxylon salicornicum*, Chenopodiaceae, steroidal glycosides, naphthenes, lipoxygenase inhibition
Electrooxidative Conversion of Dibenzoylbenzene Dihydrazones into the Corresponding Bis-Diazo Compounds and Bis-Dimethyl Acetals

by M. Okimoto, K. Numata and Y. Takahashi

Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Koen-cho 165, Kitami, Hokkaido 090-8507, Japan

(Received April 26th, 2005)

Several dibenzoylbenzene dihydrazones were electrochemically oxidized into the corresponding bis-dimethyl acetals in a methanolic solution containing sodium methoxide and catalytic amount of KI. During electrolysis, the anolyte exhibited a characteristic deep purple, which strongly suggested that formation of a diazo compound as an intermediate. Interestingly, some of the diazo compounds could be isolated directly from the anolyte.

Key words: electrooxidation, dibenzoylbenzene dihydrazones
Addition of Diazomethane to Phosphonodithioformates and Reactions of Phosphonylated Thiocarbonyl \textit{S}-Methyldides

by K. Urbaniak1, G. Mlostôń1, M. Gulea2, S. Masson2,* and H. Heimgartner3,*

1Section of Heteroorganic Compounds, University of Łódź, Narutowicza 68, PL-90-136 Łódź, Poland

2Laboratory of Molecular and Thio-organic Chemistry, UMR-CNRS 6507, ENSI-Université de Caen, 6, Bd. Du Maréchal Juin, F-14050 Caen, France

3Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(Received June 6th, 2005)

The reaction of phosphonodithioformates 14 with diazomethane at \textdegree-60°C yielded 2,5-dihydro-1,3,4-thiadiazoles 15 as unstable intermediates. Their structure was evidenced by the base-catalyzed elimination of methylsulfane leading to 1,3,4-thiadiazole-2-phosphonates. At ca. \textdegree-35°C, thermal decomposition of 15 by \textit{N}_2-elimination led to reactive thiocarbonyl \textit{S}-methylides 17. In the absence of trapping reagents, these 1,3-dipoles undergo a head-to-head dimerization leading to 1,4-dithianes 18. An intermediate zwitterionic dimer 19 was detected by 31P NMR spectroscopy. The initially formed thiocarbonyl \textit{S}-methylide 17 as well as an open-chain zwitterionic dimer 20 was intercepted by methanol. Stable interception products were also obtained with \textit{S}- and \textit{N}-nucleophiles.

Key words: addition reactions, dimerization, thiocarbonyl ylides, 1,3-dipoles, sulfur heterocycles

Ammonia Decomposition over Iron in the Presence of Water Vapor

by W. Arabczyk, J. Zamlynny, D. Moszyński and K. Kalucki

Szczecin University of Technology, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland

(Received January 18th, 2005; revised manuscript June 21st, 2005)

The ammonia decomposition over iron in the presence of water vapor has been studied. Water vapor retards this process, though no change of the apparent activation energy is observed. Despite noticeable influence of the water vapor on the rate of ammonia decomposition the sticking coefficient of ammonia on iron is not affected. Those observations were explained by the retardation of nitrogen molecules recombination on the iron surface due to the presence of oxygen atoms. The positive influence of water vapor on the rate of iron nitriding is also elucidated.

Key words: ammonia decomposition, iron, water vapor
Applicability of the NRTLmKW Method for Prediction of Binary and Ternary Vapour-Liquid Equilibria Data

by P. Gierycz

Radom Technical University, Faculty of Material Science and Footwear Technology, Chrobrego 27, 26-600 Radom
Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warszawa, Poland

(Received March 2nd, 2005; revised manuscript June 27th, 2005)

A new local composition model NRTLmKW has been used for prediction of 28 binary and ternary vapour-liquid equilibrium data. The data have been selected to give a wide representation of various kinds molecular interactions in solution. The results have been compared with correlation results of these systems given by well-known equation of states (Schmidt-Wenzel, Stryjek-Vera, Anderko) and have been discussed from the point of view of intermolecular interactions. Some recommendations have been made on the use of the equations investigated for such calculation.

Key words: correlation and prediction of VLE data, NRTLmKW model
Adsorption of Urea on the Gold Electrode
and Air/Solution Interface
by M. Jurkiewicz-Herbich

Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland

(Received March 24th, 2005; revised manuscript July 5th, 2005)

The adsorption of urea on gold from aqueous 1 M LiClO₄ has been determined from measurements of cyclic voltammetry and electrochemical impedance spectroscopy. The film pressure and the Gibbs excess are determined as functions of urea concentrations and potential. The standard free energy of adsorption is a quadratic function of charge with maximum adsorption occurring at a charge of +6 μC cm⁻². These data are interpreted in terms of the partially oriented urea dipoles (with the CO group directed towards the metal) and the contribution of water dipoles.

Key words: gold, urea, differential capacity, adsorption
Spectroscopic Studies on the Charge-Transfer Complex [VO(acac)$_2$]I$_5$ Formed in the Reaction of Oxovanadium(IV)acetylacetonate with Iodine

by M.A-Z. Eltayeb, K.A. Al-Saad and E.M. Nour

Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar

(Received February 21st, 2005; revised manuscript June 6th, 2005)
Stability of Valinomycin – Proton Complex in Nitrobenzene Saturated with Water

by E. Makrlik1 and P. Vaňura2

1Faculty of Applied Sciences, University of West Bohemia, Husova 11, 306 14 Pilsen, Czech Republic
2Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic

(Received May 17th, 2005; revised manuscript June 13th, 2005)
Synthesis and Crystal Structure of a New Mononuclear Silver(I) Complex with a Schiff Base Ligand Derived from 2-Fluorobenzaldehyde and Ethylenediamine

by Y. Qu1,2, Z.-D. Liu1,2, H.-L. Zhu1 and M.-Y. Tan2

1Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
2Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

(Received June 7th, 2004; revised manuscript June 21st, 2005)
Barrier-Discharge Reactor for Deposition of Gas-Tight Coatings on Plastic Foils

by J. Sentek, K. Krawczyk, M. Kuś and K. Schmidt-Szałowski

Faculty of Chemistry, Warsaw University of Technology, 00-664 Warszawa, ul. Noakowskiego 3, Poland
(Received May 18th, 2005; revised manuscript July 1st, 2005)
Sesquiterpenoids and Phenolics from
Taraxacum rubicundum

by K. Michalska and W. Kisiel

Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences,
12 Smętna Street, PL-31-343 Kraków, Poland

(Received May 16th, 2005)