Kinetics and Mechanism of Complex Formation between Pentamminesuccinatocobalt(III) and Gallium(III)

by Gouri S. Brahma and P. Mohanty

P.G. Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar 751004, India

(Received April 7th, 2003; revised manuscript June 11th, 2003)

The reversible complexation between pentamminesuccinatocobalt(III) with gallium(III) was investigated by stopped flow technique in the temperature range 15 ≤ t ≤ 35°C, and over an acid range of 0.15 ≤ [H+] ≤ 0.30 mol dm⁻³. Consistent inverse rate dependence was observed with increasing [H⁺]. The major path, as supported by the formation rate constant, is

\[[(\text{NH}_3)_5\text{CoOCO(CH}_2\text{)2CO}_2\text{H}]^{2+} + \text{Ga(OH)}_2^+ \rightarrow (\text{NH}_3)_5\text{CoOCO(CH}_2\text{)2CO}_2\text{Ga}^{4+} + \text{H}_2\text{O} \]

Results obtained here firmly corroborate the chelating nature of half bonded succinato moiety with the gallium ion. By comparing the \(\Delta G^\circ \) values of \(k_1 \) and \(k_2 \) paths with the \(\Delta G^\circ \) of the \(k_{ex} \) path and \(k_1 \) and \(k_2 \) with the \(k_{ex} \) (25°C), it was proposed that the substitution at Ga³⁺ centre is interchange dissociative (I₃).
Synthesis, Crystal Structure and Magnetic Properties of a Zinc(II) Complex with Nitronyl Nitroxide Radical

by Q.-H. Zhao¹, X.-F. Wang¹,², D.-Y. Tang¹,² and R.-B. Fang²

¹Department of Chemistry, Yunnan University, Kunming 650091, P. R. China
²School of Pharmacy, Yunnan University, Kunming 650091, P. R. China

(Received June 16th, 2003)

A new mononuclear diamagnetic metal zinc compound [Zn(NITpPy)_4(N_3)_2] (NITpPy = 2-(p-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and characterized. The crystal structure of this compound was determined by X-ray diffraction analysis. It crystallizes in the triclinic space group P_I with the Zn^{II} ion octahedrally coordinated and bound to four radical ligands through the nitrogen atoms of the pyridine rings, and the azido groups occupy the apical positions. The compound exhibits weak intermolecular antiferromagnetic interaction between the radicals, in which the diamagnetic zinc(II) plays the role of bridge.
Two new μ-oxamido-bridged heterobinuclear complexes have been synthesized and identified as [Cu(dmoxae)Cr(Ph$_2$phen)$_2$](ClO$_4$)$_3$ (1) and [Cu(dmoxae)Fe(Ph$_2$phen)$_2$](ClO$_4$)$_3$ (2), where dmoxae denotes N,N'-bis[2-(dimethylamino)ethyl]oxamido dianion and Ph$_2$phen represents 4,7-diphenyl-1,10-phenanthroline. Based on elemental analyses, IR, ESR and electronic spectra studies, and molar conductivity measurements, the complexes are proposed to have an extended oxamido-bridged structure consisting of planar copper(II) and octahedral chromium(III) or iron(III) ions. The two heterobinuclear complexes were further characterized by variable-temperature magnetic susceptibility (4.2–300 K) measurements and the magnetic data have been also used to deduce the indicated heterobinuclear structure. The results derived from least-squares fit of the experimental data have confirmed that the adjacent copper(II) and chromium(III) ions through the oxamido-bridge in complex (1) are ferromagnetically coupled with the exchange integral $J_{\text{Cu-Cr}} = +13.6$ cm$^{-1}$, while an intramolecular antiferromagnetic coupling is detected between the copper(II) and iron(III) ions through the oxamido-bridge in complex (2) with the exchange integral $J_{\text{Cu-Fe}} = -17.5$ cm$^{-1}$, on the basis of the spin Hamiltonian operator, $H = -2JS_{\text{Cu}} \cdot S_{\text{Fe}}$ (M = Cr$^{3+}$ and Fe$^{3+}$). The influence of electronic-structural variation of the metal ions on the nature of spin-exchange interaction between the paramagnetic centers is also discussed.
Spectroscopic, Magnetic and Thermal Properties of New Thiocyanato Bridged Complexes of the Type
[M(diamine)₂][Cr(NCS)₆]₂·nH₂O,
where M = Cu(II), Ni(II)

by G. Wrzeszcz and L. Dobrzańska

Faculty of Chemistry, Nicholas Copernicus University, Gagarina 7, 87-100 Toruń, Poland

(Received May 19th, 2003; revised manuscript July 18th, 2003)

Heteropolynuclear complexes of the type [M(diamine)₂][Cr(NCS)₆]·nH₂O, where diamine = N-methylethylenediamine (N-Me-en), 1,2-diaminopropane (pn); M = Ni(II), Cu(II) have been prepared by reacting [Cr(NCS)₆]³⁻ with the corresponding cationic [M(diamine)₂]²⁺ complex in an aqueous solution. They have been characterized by elemental analysis, IR, UV-VIS, EPR, variable temperature magnetic susceptibility and thermal analysis. Spectroscopic studies reveal thiocyanato bridges between M(II)–Cr(III) centres. The parameters determined from temperature dependence on magnetic susceptibility (80–300 K) indicate moderate antiferromagnetic interactions for Ni(II)–Cr(III) and negligibly small or very weak ones for Cu(II)–Cr(III) systems. Magnetic studies suggest also presence of diamagnetic Ni(II) ions in the structure of Ni(II)–pn–Cr(III) complex. Thermal analysis shows higher thermal stability of Ni(II)–Cr(III) than Cu(II)–Cr(III) compounds. The process of thermal decomposition after dehydration is multistage and yields NiO + NiCr₂O₄ and CuO + CuCrO₂ as final products, respectively.
Synthesis and Characterization of New d^n Metal Complexes with 4,4′-Bipyridine and Formates

by D. Czakis-Sulikowska, J. Radwańska-Doczekalska and M. Markiewicz

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

(Received May 21st, 2003; revised manuscript July 21st, 2003)

New mixed-ligand complexes of the stoichiometric formulae: Mn(4-bpy)₂(HCOO)₂·2H₂O, Co(4-bpy)(HCOO)₂·H₂O, Ni(4-bpy)(HCOO)₂·4H₂O, Cu(4-bpy)(HCOO)₂·H₂O, Zn₂(4-bpy)₃(HCOO)₄ and Cd(4-bpy)(HCOO)₂ (where 4-bpy = 4,4′-bipyridine) have been isolated in pure state. The IR and VIS spectra (for compounds of Co(II), Ni(II), Cu(II)), molar conductivity measurements and other physical properties of these compounds are discussed. Thermal behaviour of all compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The resultant final products were the metal oxide in all cases. A coupled TG-MS system was used to analysis of principal volatile thermal decomposition (or fragmentation) products of Co(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: C⁺, OH⁺, H₂O⁺, NO⁺, CO₂⁺ and other.

The Antielectrostatic Effect of N-Alkanol-N-alkoxymethyl-N,N-dimethylammonium Chlorides and Their Ester Derivatives

by J. Pernak¹, P. Chwał¹, A. Syguda¹ and R. Poźniak²

¹Poznań University of Technology, 60-965 Poznań, pl. Słodowskiej-Curie 2, Poland
²Wrocław University of Technology, 50-370 Wrocław, Poland

(Received May 16th, 2003)

Several new quaternary ammonium chlorides, analogues of choline, were prepared by reaction of 2-(dimethylamino)ethanol and its derivatives with chloromethyl alkyl ethers. The obtained chlorides were examined in respect to their antielectrostatic effects: the surface resistance and half decay time on polyethylene film were measured. Application of rough set theory permitted to perform a comprehensive analysis of data and detection of structural-activity relationships. The obtained chlorides showed high antielectrostatic properties. The most active were quaternary ammonium chlorides with 11 and 12 carbon atoms in alkyl chain.
Synthesis of 5-(2-Hydroxyethyl)-1-thia-3,5,6,8-tetraaza- and 1,3,5,6,8-Pentaazaacenaphthylene

by S. Tumkevicius and Z. Sarakauskaite

Department of Organic Chemistry, Faculty of Chemistry, Vilnius University
Naugarduko 24, 2006 Vilnius, Lithuania

(Received May 19th, 2003; revised manuscript June 23rd, 2003)

Synthesis of 5-(2-hydroxyethyl) derivatives of 1-thia-3,5,6,8-tetraaza- and 1,3,5,6,8-pentaazaacenaphthylene from 4,6-dichloro-2-methylthiopyrimidine-5-carbonitrile via the corresponding thieno- and pyrrolo[2,3-d]pyrimidines is described.
Silica Gel Supported γ-Picolinium Chlorochromate; A New and Efficient Reagent for Selective Conversion of Alcohols and Oximes into Carbonyl Compounds under Mild and Non-Aqueous Conditions

by P. Salehi1, M.M. Khodaei2* and A. Yazdanipoor2

1Department of Phytochemistry, Medicinal Plants Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran; E-mail:p-salehi@cc.sbu.ac.ir
2Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran

(Received January 6th, 2003; revised manuscript July 2nd, 2003)

The preparation of silica gel supported γ-picolinium chlorochromate and its application as an efficient reagent for selective oxidation of oximes and alcohols into carbonyl compounds is reported. The trimethylsilyloxy and ester groups survived under the reaction conditions.
An ab initio Post SCF Study on Stacking Interactions of 8-Oxo-9-methylguanine with Four Canonical DNA Bases

by P. Cysewski, Ž. Czyźnikowska-Balcerak and B. Szefler

Department of Physical Chemistry, Ludwig Rydygier Medical University of Bydgoszcz, 85-092 Bydgoszcz, Kurpińskiego 5, Poland; tel: +4852 5853614; fax: +4852 5838020; E-mail: piotr.cysewski@amb.bydgoszcz.pl

(Received May 13th, 2003; revised manuscript July 9th, 2003)

Stacking properties of 8-oxo-9-methylguanine interacting with all four canonical nucleic acid bases were studied and compared to dimers formed by unmodified guanine. The impact of twist angle and base-base separation distance on the stacked dimers energies were analyzed based on MP2/6-31G*(d=0.25) quantum chemistry and Amber molecular mechanics single point calculations. Besides, solvent affects were taken into account within PCM formalism. Presented data lead to the conclusion that 8-oxo-9-methylguanine has significantly different stacking properties compared to standard guanine. Although the dimers stabilization energies are similar for standard and modified 9-methylguanine structural properties are significantly diverse. The most stable dimers formed by 8-oxo-9-methyl-G are characterized by different conformations compared to canonical 9-methylguanine. This may lead to complete alteration of stacking abilities. For example, 8-oxo-9-methyl-G if paired with 9-methyl-G exhibits strong stacking repulsion in the twist region, for which 9-methylguanine/9-methylguanine dimer has major attraction. The most stable stacking pair is formed by 8-oxo-9-methylguanine with 9-methylguanine, while the least stable one corresponds to 8-oxo-9-methylguanine/1-methylcytosine and 9-methylguanine/1-methylcytosine pairs. Besides, significant changes of stacked complexes polarities are observed, especially in case of pairs containing methylated pyrimidines. Polarities of dimer formed by two 9-methylated purines are much less sensitive to the environment but dipole moments of 9-methylpurine/1-methylpyrimidine stacking pairs are significantly altered by taking into account solvent effects. The observed differences in stacking properties between standard and modified guanine are related mainly to charge redistribution rather than direct interactions of O8 oxygen. The correlation energies of stacking dimers are very high and are main source of pairs stabilization. Both 9-methylguanine and 8-oxo-9-methylguanine are characterized by similar values of correlation energy.
Fragmentation and Skeletal Rearrangements of the Protonated Spiro(2H-benzimidazole-2-4'-pyrazole)-5'-one Dyes Studied by Electrospray Ionization and Liquid Secondary Ion Mass Spectrometry

by R. Frański1, T. Kozik1, G. Schroeder1, Z. Kucyba2 and J. Pączkowski2

1Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznań, Poland
2University of Technology and Agriculture, Faculty of Chemical Technology and Agriculture, Seminaryjna 3, 85-326 Bydgoszcz, Poland

(Received May 5th, 2003; revised manuscript July 21st, 2003)

The mass spectrometric decomposition of the titled compounds was studied by using electrospray ionization (ESI) and liquid secondary ion mass spectrometry (LSIMS) as a methods for [M+H]+ ions generation. Low-energy collision induced dissociation (fragmentation “in source”) mass spectra for ESI and B/E linked scan mass spectra of metastable ions for LSIMS were performed. In order to better understand the decomposition of the compounds studied, the mass spectra of isotopically labelled compounds were recorded. The fragmentation pathways of [M+H]+ ions were found to be complex and skeletal rearrangements were observed. It was deduced that subsequent loss of NH3 and H2O molecules leads to the formation of ions with polycyclic structures. The fragment ion [133]+ and its complementary fragment ion [M+H-132]+ can be considered as protonated molecules of 3-methyl-1H-indazole and 2-hydroxyquinoxaline, respectively. Loss of the CH3CN molecule also occurs and this is rather simply process. Aniline elimination (H2N-C6H5) and formation of ions at m/z 146 are complex processes and it was difficult to propose plausible mechanisms for these reactions.
Electrochemical Behavior of Some Thioheterocyclic Compounds in Aqueous-Methanolic Media at Mercury Electrodes

by L. Fotouhi and R. Sadeghi

Department of Chemistry, Faculty of Science, Alzahra University, P.O.Box 1993891176, Tehran, Iran

(Received March, 11th, 2003; revised manuscript June 12th, 2003)

This paper presents the electrochemical behavior of 4-amino-3-thio-1,2,4-triazole (I), 4-amino-3-thio-5-methyl-1,2,4-triazole (II) and 4-amino-6-methyl-3-thio-1,2,4-triazin-5-one (III) at mercury electrodes. The study is performed in aqueous-methanolic solutions by differential pulse polarography (DPP), cyclic voltammetry (CV), chronamperometry, coulometry and spectrophotometry. All three compounds exhibited one reversible oxidation peak, accompanied by a prepeak, due to the adsorption of these compounds on the electrode. The main peak in each case was found to be diffusion controlled. Their polarographic responses were similar to those of common thiol compounds and involved a one electron oxidation of mercury followed by a disproportionation step to form the mercury(II) salt and Hg. (EC mechanism). The protonation constants (pK), diffusion constants, the rate constants of coupled chemical reaction and transfer coefficients were also obtained.
Three-Dimensional Self-Assembly Supramolecular Structure of Hydrogen Bonded Melaminium Citrate

by G.J. Perpétuo and J. Janczak

1Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, CEP 35.400-000 - Ouro Preto – MG, Brazil
2Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O.Box 1410, 50-950 Wroclaw, Poland

(Received May 29th, 2003; revised manuscript June 30th, 2003)

The melaminium dihydrogencitrate, \((\text{C}_3\text{H}_7\text{N}_6)(\text{HOOC–CH}_2–\text{C(OH)}\text{(COOH)}\text{–CH}_2–\text{COO}\)), crystallizes from water solution at room temperature in the \(P2_1/c\) space group of the monoclinic system with the lattice parameters of \(a = 5.531(1)\), \(b = 20.869(4)\), \(c = 11.282(2)\) Å and \(\beta = 99.96(3)\)° and \(Z = 4\). The crystals are built up from singly protonated at the one N-ring atom melaminium cations that interact in a near linear fashion through a pair of \(\text{N–H}^+\text{N}\) hydrogen bonds to form the centrosymmetric dimeric structure. The dihydrogencitrate(–) anions interact in the head-to-tail fashion via the terminal dissociated (COO–) and non-dissociated (COOH) carboxyl groups to form O–H–O hydrogen bonded zigzag infinite chains. The hydroxyl group of dihydrogencitrate(–) ions is involved into O–H–O hydrogen bonds that linked together the dihydrogencitrate(–) chains into two-dimensional network. The centrosymmetric dimers of melaminium moieties interact with the sheets of dihydrogencitrate(–) to form the three-dimensional hydrogen bonded network. The conformation of the dihydrogencitrate(–) ion in the crystal is compared with the conformation in the gas-phase obtained by the \textit{ab-initio} molecular orbital calculation.
Formaldehyde Formation in Coupled Oxidation of Methane and Methanol over V$_2$O$_5$ and MoO$_3$ Silica Supported Catalysts

by J. Łojewska, W. Makowski, A. Fajardo Farre and R. Dziembaj

Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland

(Received October 30th, 2002; revised manuscript July 1st, 2003)

The effect of methanol on partial oxidation of methane has been studied on standard molybdena and vanadia catalysts supported on silica. Prior to catalytic tests the catalysts were characterized by BET, SEM/EDAX and TPR/O methods. Three types of catalytic tests were performed giving temperature and contact time dependence on the catalyst activity and selectivity: partial oxidations of methane, methanol and methane/methanol mixtures. The methanol showed an activating impact on the partial oxidation of methane over all used catalysts samples, but the strongest one over MoO$_3$/SiO$_2$. In the absence of CH$_3$OH the only catalyst, which exhibited HCHO selectivity, was a low loaded vanadia catalyst. It has been put forward that methanol may enhance formation of oxygen active species, prerequisites for activating methane molecules, through reducing vanadia cations and causing breakage of vanadium oxygen bonds.
Processing of Methane in Dielectric-Barrier Discharge

by K. Schmidt-Sza³owski, J. Sentek, K. Krawczyk and K. Radomyska

Faculty of Chemistry, Warsaw University of Technology, 00-664 Warszawa, ul. Noakowskiego 3, Poland

(Received April 14th, 2003)
Carbon Black Generation in Gliding Discharges

by T. Opalińska¹, T. Zieliński¹ and K. Schmidt-Szalowski²

¹Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warszawa, Poland
²Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland

e-mail: kss@ch.pw.edu.pl

(Received June 13th, 2003)
Complexes of Zn(II) and Cd(II) with Bipyridine Isomers and Chloroacetates

by D. Czakis-Sulikowska, A. Malinowska and M. Markiewicz

Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland

(Received May 7th, 2003; revised manuscript July 14th, 2003)