Peculiarities of Components’ Interaction in Rare Earth–Transition Metal–Silicon Systems in $R(M_xSi_{1-x})_2$ Composition Region

by E.I. Gladyshevsky, O.I. Bodak, Yu.K. Gorelenko and V.I. Yarovetz

1Department of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005, Lviv, Ukraine
2Lviv State University “Lvivska Polytechnika”, S. Bandera str.12, 79013, Lviv, Ukraine
E-mail: romaka @ lviv.net

(Received October 6th, 2000)

The explanation of ternary compounds, forming with AlB$_2$ structure type in the rare earth metal–transition metal–silicon systems, implements on base of analysis of the dependence of the valence-electron concentration versus the kind of the transition metals in their solid solutions in the binary compounds with AlB$_2$, α-ThSi$_2$, and α-GdSi$_2$ structure types appropriate to the rare earth–silicon systems. There is shown that the silicon content (as the electron donor) during formation of the ternary compounds with AlB$_2$ structure type is dependent on the kind of transition metal and this content is decreased in the series of the compounds with Fe, Co, Ni, and Cu consecutively. The experimental data on concentrational intervals of the stability ranges of these ternary compounds are proposed to the qualitative evaluation of the effective valency of the transition metal atoms.
Metal Complexes of C-Functionalized Macrocyclic Dioxotetraamines Bearing 8-Hydroxyquinoline: Stability in Aqueous Solutions

Department of Chemistry, Nankai University, Tianjin 300071, P.R. China

(Received September 14th, 2000; revised manuscript December 11th, 2000)

Two novel 8-hydroxyquinoline connected dioxotetraamines have been designed and synthesized, and have been characterized by elemental analysis, IR, mass spectra and 1H NMR. The two ligands L1 and L2 have two chelating groups. Each can react with a transition metal ion forming complexes. Potentiometric titrations have been performed in 0.1 mol/L NaNO3 at 25°C giving the 1:1 stability constants. Coupled with UV spectroscopy the affinity of 8-hydroxyquinoline and dioxotetraamines to transition metal ions were compared and the possible structure of the metal complex species in solution was discussed. The results show that as to Mn²⁺, Zn²⁺ and Co²⁺, 8-hydroxyquinoline is a stronger chelating reagent than dioxo[13] or [14]tetraamine macrocycles and at 1:1 molar ratio (M:L), the former binds in 100% to the metal ions, while the dioxotetraamines can be only partially or not coordinated.
New hexagonal ternary phases $R_{2-y}Mn_xAl_{17-x}$ have been obtained in the Mn-rich regions of the R–Mn–Al ($R = \text{Gd, Tb, Dy, Ho, Er}$) systems: $\text{Gd}_{2-y}Mn_xAl_{17-x}$ ($0 \leq y \leq 0.15$, $13.0 \leq x \leq 15.1$); $\text{Tb}_{2-y}Mn_xAl_{17-x}$ ($0 \leq y \leq 0.23$, $13.2 \leq x \leq 15.2$); $\text{Dy}_{2-y}Mn_xAl_{17-x}$ ($0 \leq y < -0.2$, $11.9 \leq x \leq 14.6$); $\text{Ho}_{2-y}Mn_xAl_{17-x}$ ($0 \leq y < -0.2$, $11.5 \leq x \leq 14.2$) and $\text{Er}_{2-y}Mn_xMn_{17-x}$ ($0 \leq y \leq 0.27$, $0 \leq z \leq 0.54$, $11.3 \leq x \leq 14.1$). $\text{Th}_2\text{Ni}_{17}$-type of structure occurs in alloys with the content of $R = 10.5$ at.% (ideal R_2X_{17} stoichiometry). When $R < 10.5$ at.% two ways of structure constitution are possible: i) formation of the $\text{Th}_2\text{Ni}_{17}$-type structure with defective $2(b)$ atomic position (solid solution of subtraction); ii) formation of the $\text{Th}_2\text{Ni}_{17}$-related type structure with the substitution of part of R atoms by the Mn-Mn pairs (solid solution of multiple substitution).
Cine-Substitution of Nitro Group in 1-Aryl-2-methyl-4-nitroimidazoles by Thiols; X-ray Diffraction Proof for the Product Structure

by J. Suwiński¹, K. Świerczek¹, P. Wagner¹, M. Kubicki² and T. Borowiak²

¹Institute of Organic Chemistry and Technology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland, e-mail: suwinski@polsl.gliwice.pl
²Adam Mickiewicz University, Faculty of Chemistry Grunwaldzka 6, 60-780 Poznań, Poland

(Received November 16th, 2000)

1-Aryl-2-methyl-4-nitroimidazoles react with 2-amino- or with 2-hydroxyethanethiols to give products of cine-substitution of the nitro group. 5-(2'-Hydroxyethylthio)-2-methyl-1-phenylimidazole has been isolated as a free base, other products in the form of dipicrates. A structure of 5-(2'-aminoethylthio)-2-methyl-1-phenylimidazole dipicrate was proved by X-ray diffraction.

by J. Bąkowska-Janiszewska, J. Ścianowski and A. Uzarewicz

Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland

(Received July 31st, 2000; revised manuscript November 20th, 2000)

The reaction of neryl (3), geranyl (4), (+)-carvotanacetyl (5), (–)-carvyl (6) and perillyl (7) chlorides with phenylseleno- (1) or phenyltellurosodium (2), and then with chloramine-T afforded α,β-unsaturated toluenesulfonamides 8–11, which were reduced with sodium in liquid ammonia to allylic amines 12–15. Allylic phenyltellurides were oxidized by air to carbonyl compounds 29–31 or alcohol 28.
Synthesis of 2,2′-Diselenobisbenzamides and 4,4′-Diselenobisbutyramides with Sulfamoyl Groups as New Potential Virucides and Cytokine Inducers

by J. Palus¹, K. Kloc¹, J. Młochowski¹, P. Małysa¹, M. Szczurek¹, E. Piasecki² and K. Rybka²

¹Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wybrzeże Wyspiarskiego 27, 50-370 Wrocław, Poland
²Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland

(Received November 29th, 2000)

The synthesis of 2,2′-diselenobisbenzamides and 4,4′-diselenobisbutyramides with sulfamoyl functions, two new groups of potential antiviral agents and cytokine inducers, based on the acylation of the 4-aminobenzenosulfonamides with corresponding chlorocarbonylaryl or chlorocarbonylalkyl diselenides, has been elaborated. In a similar way dithiobenzamide and diphenic acid bisbenzamide were obtained from dithio-2,2-bisbenzoic acid and diphenic acid dichlorides respectively.
Application of Bromotrimethylsilane and Trialkyl Phosphites for Convenient and Effective Synthesis of Aminophosphonic Acids and Corresponding Monoalkyl and Dialkyl Esters

by B. Boduszek

Institute of Organic Chemistry, Biochemistry and Biotechnology, Wroclaw University of Technology, 50-370 Wroclaw, Poland
E-mail: boduszek@kchf.ch.pwr.wroc.pl

(Received October 27th, 2000; revised manuscript November 30th, 2000)

Application of bromotrimethylsilane (Br-TMS) in a mixture with trialkyl phosphate for synthesis of various aminophosphonic acids and esters was investigated. It was found, that appropriate mixtures of Br-TMS and trimethyl phosphate or triethyl phosphate were effective reagents for phosphorylation of various aldimines, obtained from aromatic and heteroaromatic aldehydes. Products of these reactions were corresponding aminophosphonic acids, or corresponding dialkyl or monoalkyl esters, respectively.
Cine-Substitution of 2-Methyl-1,4-dinitroimidazole in Dimethylsulfoxide Solution. Synthesis of 4(5)-(Azol-1-yl)-5(4)-nitroimidazoles

by K. Walczak, K. Świerczek and J. Suwiński

Institute of Organic Chemistry and Technology,
Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
(Received December 1st, 2000)

4(5)-(Azol-1-yl)-5(4)-nitroimidazoles were obtained in moderate yields by nucleophilic cine-substitution of 2-methyl-1,4-dinitroimidazole. Nucleophilic azole anions were generated from salts of parent heterocycles with 1,8-diazabicyclo[5.4.0]-undec-7-ene.
Synthesis of Ortho-, Meta- and Paracyclo(1,1’)-ferrocenophanes Containing Sulfide Bonds

by A. Ratajczak and H. Niedbala

University of Silesia, Department of Organic Chemistry, Institute of Chemistry, 40-006 Katowice, Poland

(Received November 2nd, 2000; revised manuscript December 11th, 2000)

The title dithiaferrocenophanes (1–5) have been synthesized in reactions of 1,1’-di(hydroxymethyl)ferrocene with o-, m- and p-dithiophenols, applying high dilution technique and small amount of trifluoracetic acid as catalyst. As by-products insoluble ferrocene polysulphides formed in competitive intermolecular condensations were isolated in all cases. In reactions of isomeric dithiophenols with ferrocenylmethanol acyclic model compounds (6–10) were prepared for spectral comparisons. The complexing ability of the synthesized ortho- and meta(1,1’)ferrocenophanes 1 and 3 with metal cations was measured by a solvent-extraction method, and was found to be poor with alkali cations but significantly better with Ag⁺ cations.
Coupling of the C6 and C6′ Positions of Sucrose by Metathesis Reaction

by S. Jarosz, A. Listkowski and M. Mach

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland E-mail: sljar@ichf.edu.pl

Received December 18th, 2000

1′,2,3,3′,4,4′-Hexa-O-benzylsucrose (7) was converted into diallyl ether 11 and subjected to metathesis reaction with the Grubbs’ catalyst. The expected macrocyclic product (12) was obtained in a good yield as a cis/trans mixture of olefins, hydrogenation of which gave fully deprotected saturated compound 13.
Polymerization of acrylonitrile (AN), without and in the presence of CuCl$_2$, CoCl$_2$, and NiCl$_2$, formed polyacrylonitrile homopolymer (PAN) and polymer complexes of AN–CuCl$_2$, AN–CoCl$_2$ and AN–NiCl$_2$, respectively. These polymer complexes were characterized using spectroscopic techniques. Electrical conductivity and cyclic voltammetry on untreated and heat treated polymers, carried out at different temperatures, showed that the conductivity increased with temperature, presumably due to conjugation and cyclization during heat treatment.
Electrochemical Behavior of Mixed Self-Assembled Monolayers of Azobenzene and Alkanethiol

by Z. Wang and H.L. Li

Department of Chemistry, Lanzhou University, 730000, Lanzhou, P. R. China

(Received September 20th, 2000; revised manuscript November 15th, 2000)

The self-assembly and electrochemical properties of mixed self-assembled monolayer (SAMs) of 4-methoxy-4′-(N-(2′-mercaptoethyl)amino)carbonyl)azobenzene (C1AzoC2SH) and 1-butanethiol (C4SH) were studied on the gold electrode by cyclic voltammetry. Usually the azobenzene groups exhibit very sluggish electron-transfer kinetics in the densely packed films. The alkanethiol as the spacer molecule was introduced to the azobenzene monolayer system to weaken the intermolecular interaction in order to enhance the electrochemical activity of the azobenzene group. Under the different molar ratios of C1AzoC2SH and C4SH we obtain a different electrochemical response and an apparent surface electrochemical rate constant. The experimental results suggested that the azobenzene groups exhibit a higher electrochemical activity in the mixed SAMs systems.
Dipole Moment, Molar Kerr Constant, Crystal and Molecular Structure of
3-Chloro-N-methyl-N-nitroaniline

by V.V. Prezhdo¹, A.S. Bykova², T. Głowia³, O.V. Prezhdo⁴,
Z. Daszkiewicz⁵ and J.B. Kyziol⁵

¹Institute of Chemistry, Pedagogical University, Chęcińska 5, 25-020 Kielce, Poland
²Kharkov State Polytechnic University, Frunze 21, 61-002 Kharkov, Ukraine
³Department of Chemistry, University of Wrocław, Joliott-Cuiré 14, Wrocław, Poland
⁴Department of Chemistry, University of Washington, WA 98915, USA
⁵Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland

(Received June 14th, 2000; revised manuscript December 8th, 2000)

Dipole moment, molar Kerr constant, crystal and molecular structure of m-
ClC₆H₄N(CH₃)NO₂ (or C₇H₇ClN₂O₂) are studied. Comparison the data obtained by di-
pole moment and molar Kerr constant measurement, X-ray crystallographic investiga-
tion and quantum-chemical calculation show that the molecule contains a planar NNO₂
nitroamino group which is twisted around the N–C phenyl bond by ca 61.4° from the plane
of the aromatic ring. The structural data are compared with the data for p-
ClC₆H₄N(CH₃)NO₂ and the influence of the substituent on the structural parameters of
the molecule is established.
Synthesis and Surface Acidity of Amorphous Fluorine-Containing Aluminium Borates

by S.Ya. Brichka and V.V. Brei

Institute of Surface Chemistry, National Academy of Sciences of Ukraine,
Prospect Nauky 31, 03022 Kyiv, Ukraine

(Received October 18th, 2000; revised manuscript December 20th, 2000)

A series of fluorine-containing aluminium borate samples with Al$_2$O$_3$/B$_2$O$_3$ = 3 and HF/B$_2$O$_3$ = 0.05–0.50 molar ratios has been synthesized by an impregnation method using NH$_4$F. The materials obtained are amorphous up to 840–1130 K. Their thermal transformations were investigated by DTA and MSA. There are Lewis and Brönsted acid sites present in these samples. The very strong Lewis sites are due to formation of trigonal B$^{3+}$, bonded with F$^-$ on the surface of fluorine-containing aluminium borates. Dehydration of isopropyl alcohol was used as a probe reaction to measure the acidity. The results of measurements have shown that these materials were more acidic and catalytically active than the starting aluminium borate.
Methanol Synthesis from CO$_2$ and H$_2$ on Cu/ZnO/Al$_2$O$_3$ – ZrO$_2$ Catalysts. Catalytic Activity and Adsorption of Reactants

by J. Słoczyński1, R. Grabowski1, A. Kozłowska1, M. Lachowska2 and J. Skrzypek2

1Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Street, 30-239 Kraków, Poland

2Institute of Chemical Engineering, Polish Academy of Sciences, 5 Bałtycka Street, 44-100 Gliwice, Poland

(Received June 2nd, 2000; revised manuscript December 28th, 2000)

Effect of preparation method and substitution of Al$_2$O$_3$ by ZrO$_2$ on the adsorption of CO, CO$_2$, H$_2$O and methanol on the Cu/ZnO/Al$_2$O$_3$ – ZrO$_2$ catalysts as well as their activity in the synthesis of methanol from CO$_2$ and H$_2$ were investigated. The catalytic activity increases in the series: Cu/ZnO/Al$_2$O$_3$ obtained by co-precipitation < Cu/ZnO/Al$_2$O$_3$ – ZrO$_2$ obtained by the amorphous precursor (citric acid) method < Cu/ZnO/ZrO$_2$ obtained by the amorphous precursor (citric acid) method. It has been found that catalysts obtained by using citric acid as complexing agent show higher adsorption of methanol compared to water than the catalysts obtained by the co-precipitation. A partial substitution of Al$_2$O$_3$ by ZrO$_2$ evidently decreases the reversible adsorption of water and CO. A correlation between adsorptive and catalytic properties has been established. With increasing ratio of reversible CO$_2$/CO or CH$_3$OH/H$_2$O adsorption, an increase of the catalysts activity in the synthesis of methanol from CO$_2$ and H$_2$ is observed.

Thermodynamic Study of the Interaction Between Some Recently Synthesized Benzo-Substituted Macrocyclic Diamides with Some Pyridinium Ion Derivatives in Acetonitrile Solution

by M.R. Ganjali, M.H. Zargazi and A. Mohajeri

Department of Chemistry, Tehran University, Tehran, Iran

(Received October 9th, 2000; revised manuscript January 2nd, 2001)

The formation of pyridinium, 2-methyl pyridinium, 2,4-dimethyl pyridinium and 2,4,6-trimethyl pyridinium complexes with the some recently synthesized benzo-substituted macrocyclic diamides was investigated conductometrically in acetonitrile solution at various temperatures. The formation constants of the resulting 1:1 complexes were determined from the computer fitting of the molar conductance-mole ratio data. In all cases studied, the stability of complexes decreases in the order Py$^+$ > 2m-Py$^+$ > 2,4dim-Py$^+$ > 2,4,6trim-Py$^+$. The enthalpy and entropy of complexation reaction were determined from the temperature dependence of the formation constants. In all cases, the complexes were enthalpy stabilized but entropy destabilized.
Structure of O,O-Diethylthionophosphorylhydrazine o-Vanillin Schiff Base Copper(II) Complex:
\(\text{Cu}[(\text{C}_2\text{H}_5\text{O})_2\text{PSHNCHPh}(\text{o-O})\text{OMe}]_2 \)

Department of Applied Chemistry, Qingdao Institute of Chemical Technology, Qingdao 266042, P. R. China

(Received June 6th, 2000; revised manuscript December 1st, 2000)
N,N-Bispropylidithiocarbamato Bis(triphenylphosphine)
Copper(I) Dichloromethane Solvate:
\[(n-\text{Pr})_2\text{dtc(PPh}_3)_2\text{]}\text{Cu-CH}_2\text{Cl}_2\text{, (dtc = Dithiocarbamate)}

by L.Z. Xu1, J.H. Lin1, S.S. Zhang1, K. Jiao1 and F.F. Jian2

1Department of Applied Chemistry, Qingdao Institute of Chemical Technology,
Qingdao 266042, P.R. China
2Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry,
Nanjing University, Nanjing 210093, P. R. China

(Received June 8th, 2000; revised manuscript December 1st, 2000)
Investigation of Pyridinium Tetrachloroferrates(1-)

by Z. Warnke, G. Wawrzyniak, D. Wyrzykowski and J. Kosmalski

Faculty of Chemistry, University of Gdańsk, 80-952 Gdańsk, Sobieskiego 18, Poland,
e-mail: warnke@chemik.chem.univ.gda.pl

(Received June 15th, 2000; revised manuscript December 18th, 2000)
The Synthesis and Characterization of a New Ladder-Type Structure of Compound [FeMoO₄(phen)]ₙ (phen = 1,10-phenanthroline)

by D.Q. Chu¹,², J.Q. Xu¹, Z.L. Yu¹, L.M. Duan³, L. Ye⁴, T.G. Wang¹ and A.Q. Tang²

¹Department of Chemistry, Jilin University, Changchun 130023, P. R. China
E-mail: xjq@mail.jlu.edu.cn Fax: +86-431-8949334
²Institute of Theoretical Chemistry, Jilin University, P. R. China
³Department of Chemistry, Inner Mongolia Teachers’ College of Nationalities, P. R. China
⁴Key Laboratory for Supramolecular Structure and Spectroscopy, Jilin University, P. R. China

(Received October 27th, 2000; revised manuscript December 18th, 2000)