Generation and Typical Reactions of Thiocarbonyl Ylides

by G. Młościoń and H. Heimgartner

Section of Heteroorganic Compounds, University of Łódź, Narutowicza 68, PL-90-136 Łódź, Poland
Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(Received May 19th, 2000)

In recent years, thiocarbonyl ylides found new application as useful building blocks in syntheses of sulfur containing heterocycles. They were also shown to play an important role as key intermediates in two-step [3+2] cycloaddition reactions. Strategies explored for the generation of thiocarbonyl ylides and their typical reactions including [3+2] cycloadditions, 1,3- and 1,5-electrocyclizations, additions of OH, SH, and NH groups, and rearrangements are presented. Reactivities of isolable, push-pull stabilized thiocarbonyl ylides are compared with those proposed as transient species.
Quantitative Surface Analysis by X-ray Photoelectron Spectroscopy

by A. Jabłoński

Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland

(Received June 13th, 2000; revised manuscript August 2nd, 2000)

X-ray photoelectron spectroscopy (XPS) has become a powerful tool to study first few atomic layers at solid surfaces. This technique provides information on chemical state of atoms at the solid surface, and the composition of the analysed layer. Present work reviews the typical procedures of quantitative XPS analysis. The relatively accurate procedures are based on measurements involving standards, i.e. samples with known surface composition. However, these procedures may be applicable to perfect samples with similar surface structure as the standards. In general, such approach is impractical for use in routine analysis of samples consisting of large number of components. In experimental practice we frequently encounter the imperfect samples with rough surfaces, or in a form of a powder, for which the use of standards is not recommended. A convenient procedure to use in such a case is the relative sensitivity factor approach, which does not require the external standards. However, accuracy of this method is rather poor. A reasonable compromise for XPS analysis of complex samples is a variation of the relative sensitivity factor approach with sensitivity factors determined for a given instrument and the used XPS configuration. A good example of the modification of the relative sensitivity factor approach is the multiline approach. The surface composition is calculated then after statistical analysis of all intensities observed in the spectra. The details of such procedure are discussed in the present review.
Reaction of α- and β-Halogenostyrenes with Arenediazonium Tetrafluoroborates and Potassium Thiocyanate

by E.E. Bila, M.D. Obushak and M.I. Ganushchak

Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya str.6, 79005 Lviv, Ukraine

(Received April 10th, 2000; revised manuscript July 10th, 2000)

Reaction between α- and β-monohalogenostyrenes 1–4, arenediazonium tetrafluoroborates 5a–e and potassium thiocyanate under catalytic condition (Cu 2+) proceeds unusually. It was shown that direction of these reactions depends on the halogen position and the solvent: α-substituted (H, Cl or SCN) stilbenes or products of thiocyanatoarylation have been obtained. β-Chloro- 1 and β-bromostyrenes 2 react with 5a–e and KSCN to form substituted trans-stilbenes 6a–e and Z-α-thiocyanatostilbenes 7a–e. α-Chloro- 3 and α-bromostyrenes 4 react with 5a–e and KSCN in acetone or acetone-water medium to form products 6a–e and 7a–e. The 4-nitrobenzenediazonium tetrafluoroborate (5e) gives of Z-α-chloro-4-nitrostilbene (9e) besides 6e and 7e. In acetone-water medium α-chlorostyrene (3) gives also 1-chloro-1-thiocyanato-1-phenyl-2-arylethanes 8a–e and moreover products 6a–e and 7a–e. The radical cation mechanism for these reactions has been discussed. It is postulated that the reaction takes place through the formation of radical cations [PhCH=CHHal] + or [PhCHal=CH2]+ with further formation of phenylvinyl cations.
Hydride Reduction of 4-Nitro-1-phenylazoles

by J. Suwiński and P. Wagner

Institute of Organic Chemistry and Technology, Silesian University of Technology, 44-100 Gliwice, Poland, suwinski@polsl.gliwice.pl

(Received July 13th, 2000)

Hydride reduction of 4-nitro-1-phenylimidazole and 2-methyl-4-nitro-1-phenylimidazole to the respective 1-aryl-4-oximinoimidazolidines by metal hydrides was studied under different conditions. 1-Aryl-4-oximinoimidazolidines were hydrolyzed to the respective imidazolidinones. For a comparison hydride reduction of 4-nitro-1-phenylpyrazole to the corresponding azoxy compound was carried out too.
Reduction of Epoxy Isophorone Oxime by Metal Hydrides

by R. Dresler and A. Uzarewicz

Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Toruń, Poland

(Received July 14th, 2000)

Epoxy isophorone oxime (1) is reduced with LiAlH₄/CeCl₃/THF or NaBH₄/MoO₃/MeOH to a mixture of \(t-3 \)-amino-1,5,5-trimethyl-r-1-cyclohexanol (2) and \(c-3 \)-amino-1,5,5-trimethyl-r-1-cyclohexanol (3), 39:61 and 67:33, respectively. The reduction of 1 with NaBH₄ or LiAlH₄ affords a mixture of isomeric 3,5,5-trimethyl-3-hydroxycyclohexan-1-one oximes 4 and 5 (syn:anti 60:40 and 44:56, respectively). The reduction of 1 with NaBH₄/CeCl₃/7H₂O/ROH or CeCl₃/7H₂O/ROH (R = Me, Et, n-Pr) results in the nucleophilic opening of the epoxide ring to give 2-alkoxy-3-hydroxy derivatives \(6a-c \), \(7a-c \), and symmetric ethers \(8 \) and \(9 \). When 1 reacts with CeCl₃/7H₂O/t-BuOH only \(8 \) and \(9 \) are formed.
C(2)-(α-Mannosyl)indole: The Pivotal Intermediate Towards the Natural C-Glycopeptides

by H.H.A.M. Hassan¹ H.S. Spies² and M.W. Bredenkamp²*

¹Chemistry Department, Faculty of Science, Alexandria University, P.O. 425-Ibrahimmia, 21321-Alexandria, Egypt. e-mail: hassan@safwa.com.eg.
²Department of Chemistry, University of Stellenbosch, Matieland 7602, South Africa e-mail: MWB@land.sun.ac.za

(Received May 5th, 2000; revised manuscript July 19th, 2000)

Two different approaches were investigated to prepare the unusual modified peptide C(2)-mannosylated indole residue. Direct glycosylation of 2-metallated indoles or 2-trimethylsilylindole derivative by reaction with perbenzylated α-D-mannopyranosyl bromide was incompatible due to the intermediate generation of a nucleophilic anomeric carbon atom followed by elimination of the functional group at C-2. Palladium-catalyzed coupling/cyclization approach was examined as a novel route towards indole-(C)-glycosides. Coupling of the mannopyranosyl donors with o-ethynylaniline derivative in the presence of Pd(0) followed by cyclization of the newly formed alditols were also described.

1H and 13C NMR Studies of 5,6,11-Trimethyl-6H-indolo[2,3-b]quinolinium Methylsulfate and Some of Its Derivatives

by L. Kania1, K. Kamieńska-Trela1 and L. Kaczmarek2

1Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
2Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warsaw, Poland

(Received May 30th, 2000; revised manuscript July 20th, 2000)

1H and 13C NMR spectra of the parent 5,6,11-trimethyl-6H-indolo[2,3-b]quinolinium methylsulfate and of its nine 2- and 9-methyl-, methoxy- and fluoro-substituted derivatives were measured and assigned from COSY 1H-1H, HETCOR 1H-13C and SPT INEPT experiments. Proton and carbon-13 chemical shifts and long range spin-spin coupling constants (nJ$_{HH}$, n = 3, 4) were considered in terms of the electron density distribution in the indoloquinolinium moiety and compared with the corresponding data obtained earlier for 5,11-dimethyl-5H-and 6,11-dimethyl-6H-indolo[2,3-b]quinoline derivatives. The sensitivity of the proton chemical shifts to the changes in concentration was found for all the compounds studied.
Novel Oxidative, Liquid-Phase Chlorination Procedures for the Preparation of (Dichloroiodo)arenes from Iodoarenes

by N. Obeid and L. Skulski

Chair and Laboratory of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland

(Received June 20th, 2000; revised manuscript July 21st, 2000)

One improved and eight novel oxidative, liquid-phase chlorination procedures for the preparation of (dichloroiodo)arenes, ArICl₂, from iodoarenes, ArI, are presented in this paper. KMnO₄, activated MnO₂, KClO₃, NaIO₄, NaIO₃·H₂O, concentrated nitric acid, sodium perborate monohydrate, sodium percarbonate, and a stable urea·H₂O₂ complex are used as oxidants, which oxidize hydrochloric acid to produce in situ a very active chlorine. The crude yields for the PhICl₂ obtained are good or excellent (63.5–99%).
Aggregation of the Silica Suspension by Al-Coagulants

by L. Smoczyński

Warmia and Mazuria University in Olsztyn, Department of Chemistry,
Plac Łódzki 4, 10-957 Olsztyn, Poland

(Received April 14th, 2000; revised manuscript June 26th, 2000)

“SiO₂-Al” aggregates, obtained with Al-coagulants, were studied. An advanced photographic method for measuring the size and velocity of aggregates was applied. The study on “fresh” and “old” sludge obtained in the pH range of 5–9 with the optimal or doubled Al-dose was carried out. Fractal dimension (D) values from 1.67 to 2.00 at the mean coefficient of determination $r^2 = 0.916$ were measured. An effect of the type of coagulant, pH, Al-dosage and age of the aggregates on D was examined and explained. Fluctuations of “solid mass” contribution, reaching 1:20, to the total mass of the average sludge were ascertained. Fractal dimension has appeared a powerful tool in the research on the structure and composition of sludge aggregates. This tool was sensitive enough to indicate even such subtle changes as sludge ageing or coagulant overdosing.
Multi-Periodic and Chaotic Cyclic Voltammograms at Anodic Dissolution of Copper

by M. Dolata and A.L. Kawczyński

Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw, Kasprowka 44/52, Poland, E-mails: dolata@ichf.edu.pl, alk@ichf.edu.pl

(Received June 14th, 2000; revised manuscript July 12th, 2000)

Periodic (up to period 8) and chaotic voltammograms are obtained during multicycle scanning of applied potential during copper dissolution in a copper sulphate-sulphuric acid solution. Dynamic character of voltammograms is analysed by the reconstruction of attractors, Poincaré sections and return maps. Obtained results show that changes of bifurcation parameters (a sweep rate or an upper potential limit) cause that voltammograms change according to period doubling sequence.
Structures of Diguanidinium Sulfate and Guanidinium Hydrogen Sulfate

by P. Dera¹, A. Katrusiak¹ and M. Szafranski²

¹Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
²Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

(Received April 3rd, 2000; revised manuscript May 29th, 2000)
Novel Norbornene to Norcarene Rearrangement: An Exceptionally Facile 1,3-Carbon Sigmatropic Shift

by K.R. Buszek and S.M. Bauer

Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701, USA

(Received June 1st, 2000)
Synthesis, Spectroscopic Characterization and Magnetic Properties of Nickel(II), Cobalt(II) and Manganese(II) Complexes Containing 4-Amino-3,5-dimethyl-1,2,4-triazole and N-Bridging Thiocyanate

by J.-K. Tang¹, H.-M. Wang¹, P. Cheng¹, X. Liu², D.-Z. Liao¹, Z.-H. Jiang¹ and S.-P. Yan¹

¹Department of Chemistry, Nankai University, Tianjin, 300071, P. R. China
²State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China

(Received May 5th, 2000; revised manuscript July 13th, 2000)